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FOREWORD

This support analysis and scientific programming was per-

formed under contract to the Analysis and Simulation Branch

(SUWA) of the Air Force Geophysics Laboratory (AFGL),

Hanscom Air Force Base, Massachusetts. Programs described

herein and documentation of such can be obtained from the com-

puter library of SUWA.
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SYNCHRONOUS DEMODULATION OF

CHOPPER MODULATED RADIANCE SIGNALS

Initiator: Mr. T. Murdock

Problem No.: 3003

Project No.: 7670

This problem entailed the development of a sequence of programs to proc-

ess telemetered radiance signals. The main processing was performed in

a program called IRDSP. The following contains a description of the proc-

essing algorithms developed by RDP for this task.

Program IRDSP (Infra-Red-Data Signal Processing) was written to de-

modulate the chopper-modulated radiance signals contained in the tele-

metered data received from the IRBS or ZIP flights. The multi-tape telem-

etry data base is processed by IRDSP one tape at a time. The output of

the program consists of plots and printed tables of the radiance estimates

and a plot-data file. When the entire input data base has been processed,

the plot-data files are sorted by key and a plot-data base is created. Using

this, flight-plots of the radiance signals are produced using a separate pro-

gram. The flight plots can be over the entire flight time, or over a time

interval falling on two input tapes.

In this write-up the description of program IRDSP is presented in four

sections:

1. The Signal Demodulation task.

2. Input Data Base.

3. Processing Methodology and Program Flow Chart.

4. Demodulation Algorithm.



1. The Signal Demodulation Task

The high speed data link in both the IRBS and ZIP instrumentation transmit

the radiance measurements made by the multi-sensor Infra-Red (IR) de-

tectors in a chopper modulated form. 27 of the 38 channels in IRBS and 32

of the 44 channels in ZIP are chopper-modulated outputs of Infra Red (IR)

detectors. Each is sensitive to a unique range of wavelengths. RDP's task

is to demodulate the radiance message in each channel and deliver plots

of time versus radiance tables to the client.

A typical chopper-modulated radiance waveform in the input data base

has the form as shown in Figure 1. The radiance message is embedded in

the relatively slowly varying envelope of the chopping waveform.

Over the 20-minute flight time, the detectors are exposed to both

calibrated and unknown target sources of radiance. Each channel output

will contain the numbered features shown in Figure 1. These are briefly

described below.

1. Just prior to take-off the detectors are calibrated by making the hard-

ware execute an auto-calibration (Autocal) sequence in which known

levels of black body radiation are shone on the detectors.

2. Approximately 60 seconds after take-off, the autocal sequence is re-

peated for an inflight calibration.

3. After 100 seconds into the flight, the detectors scan the earth limb in

1/20 increments. This data is taken for the next 200 sees.

4. During the remainder of the flight, the detectors measure Zodiacal light.

To design a suitable demodulation algorithm, we must have an adequate

mathematical representation of the received chopped waveforms.

The chopping of the radiance message is done by mechanically opening

and closing the detector aperture in step with a high-Q tuning fork of fre-

quency f Hz.

The chopping waveform is not rectangular. Nevertheless it is periodic

and can be represented by a Fourier series as:

~(t) ~a n .e (1)
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Its Fourier Transform is a train of impulses,

O(w) = 27 E an 6(w-nw) (2)

n=-

When the radiance message, r(t) is chopped by (t), the convolution theo-

rem states that r(t) P p(t) has the spectrum

1

F(r(t) • (t)) = 1 R(w) * 4(w)

(where F( ) is the Fourier Transform operator and * is the convolution

operator)
cO

= R(w) an 6(w -nw)

a n  R(w-nwc ) (3)

i.e., the chopped message spectrum is the weighted sum of the translates

of the message spectrum, each translate being located at a chopper har-

monic.

Before sampling and PCM encoding, however, the message spectrum

at D.C. is removed by a band-pass filter which also acts as a de-aliasing

filter. Now, if the message spectrum R(w) has a bandwidth B <<w, then,

I Band Pass Filtered

has the approxdmate spectra

S(w) L an Gn • R(w-nwc (5)

whre Gn are the values of the filter's frequency response at the nth har-

monic location and is assumed to be constant in a local neighborhood,

nfc ± B Hz.

4



Letting An = a n • Gn, the received chopped radiance signals then have
spectra of the torm,

S(w)= An R(w-nw.) (6)

n=-

Note that An 0 for n 0 and n > f /2f due to the band-pass filter.

The signal processing task is to reconstruct the radiance message r(t)

from a noisy observation of s(t). In practice, this can be done only to with-

in a scale factor since the Fourier coefficients, an, of the chopping wave-

form as manifested in s(t) are not known. The proper scale factor is then

determined from the autocalibration level outputs.

2. Input Data Base

The ZIP and IIRBS data bases have different amounts and types of data, but

as far as radiance data demodulation is concerned, both data bases have

the same structure and are thus processed in the same manner. The IRBS

rocket is expected to transmit information for about 20 minutes. The on-

board electronic hardware samples 38 desired output quantities, quantizes

each sample to 14 bits, multiplexes and block-encodes the binary data to

facilitate receiver synchronization and transmits the output bit stream at

300 kilo-bits per sec (kbps) as a PCM Biphase (L) signal. At the receiver,

the received bit sequence is recorded on an analog tape. In the ZIP design

44 output quantities are sampled, multiplexed, and telemetered at 616 kbps.

In either case, the analog data tape is, however, not directly accessible by

a computer. In fact, to make the data compatible with program IRDSP

several steps are involved. These steps are block diagrammed in Figure 2.

A brief description of the steps in Figure 2 is as follows:

1. The analog tape is decoded in pieces on to "n" digital tapes by the

Honeywell 316 FM decoder. Each tape (designated 1. 1-1.n) can con-

tain approximately 3 minutes of IRBS data or about 90 sees of ZIP

data.

2. Duplication on to work tapes. The tapes in Step 1, L e., 1.1-1.n are

simply duplicated on to work tapes, II. 1- 1.n. All further steps are

5
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performed on these work tapes. The reason is that in case of loss of

information in any tape, recovery via duplication in Step 2 has much

faster turnaround time than recovery via decoding in Step 1.

3. Unpacking/Repacking. The data in tapes II. 1-I1. n (the outputs from

Step 2) exists in blocks of packed bits. A modified version of HON316

is used to unpack and repack specific bits into integer values. These

numbers are, in fact, the output of the A/D converter in the rocket

hardware which originally sampled the data channels. HON316 then

writes these integer sample values in blocks to the output tape.

Each output tape (II. 1-I1. n) contains one file comprised of binary

records of the form shown in Figure 3.

t t t 13: fRBS

t 2  t1 1 : ZIP

dl(t1)

d38(tl): IRBS d3 (t1 3 ): IRBS

d44(tl): ZIP d4 4 (t1 1): ZIP

Figure 3. Structure of a Record in the Input Tapes for Program
IRDSP.

Each record contains the two-integer dimensions of a data array

followed by the array itself. Array dimensions are 38 X 13 for IRBS

and 44 x 11 for ZIP. The first location of each column contains sam-

pling time values and the remaining locations contain channel outputs

at this time instant.

In the ideal situation of no time errors (row #1 of each record),

the tapes III. 1-III. n are compatible with program IRDSP. Practically,

however, errors are invariably present and the following step deals

with this problem.

I7



4. Identification and classification of time errors. Program ANALYZE

is used to read the tapes III. 1-Il1. n (one tape per run) and scan through

the first row of each record identifying and classifying time-data er-

rors. It also produces a plot of time versus sample index in which

errors can be visually observed.

Each run's printout is next inspected and a judgment is made on

whether the corresponding tape is acceptable. Tapes that are deemed

unacceptable are returned to be re-digitized.

The above four-step procedure for preparing the raw, rocket data for

analysis by program IRDSP, appears deceptively straight forward. In fact,

it is a time-consuming process due to the turnaround requirements for tape-

jobs on the AFGL computer system. Experience with the test data tape has

shown that 4-5 weeks are needed to complete Steps 1-4 above, if the data

exhibits a large number of time errors. Further, the probability exists

that the time errors will lead to misinterpretation of the data.

,3, Processing Methodology and Program Flowchart

Earlier, in Section 2, the final structure of the received rocket data was

described. The data exists on 9-track tapes. Consider the IRBS data for

a moment. Each tape has approximately 3 minutes of data. Since the sys-

tem sampling rate is 563.91 Hz, one tape contains over 100, 000 samples

of data for each of the 38 channels. For processing on the AFGL computer

which has a 300k word memory, one is forced to process the data in smaller

c'iivenient segments. Currently, a segment size of 4000 is being used. This

is approximately 7 seconds of data. This segmentation does not, however,

interfere with the signal processing. Successive input segments are precisely

overlapped to compensate for data loss due to end-effects of the digital fil-

ters mnd consequently the output blocks are contiguously spaced in time.

Of course, if a data gap is detected, the segmenting process continues from

beyond the gap. The process continues till the data corresponding to the

spe-cified time Interval has been analysed or until an end-of-file mark has

been reached.

The implementation of the above processing methodology is in the form

of two routines - FNDBLKS and GETBLK. FNDBLKS is called once before
8



any signal processing begins. It scans through the input data tape and iden-

tifies segments to be processed. This identification involves tagging the

location in the file of the beginning time and end time for each segment in

terms of (1) the record # in the file and (2) the column # within this record.

The second routine, GETBLK, uses the information compiled by

FNDBLKS to read a data block from tape, convert the integer A/D output

values into voltage values and make the block available to the subroutine

ENVELOP for signal processing. After a call in which a new channel is

specified, successive calls to GETBLK can be used to sequentially access

the data segments for that channel.

Having described how the data is blocked and accessed, the overall flow

chart of ERDSP can now be outlined as in Figure 4.

4. The Demodulation Algorithm

The radiance estimation procedure used in program TRDSP is now described.

With reference to the flow chart in Figure 4, the following description ap-

plies to the processing block, labelled "ENVELOP."

Quite simply, the radiance estimate is the envelope of the complex,

narrow-band component of the received data, within the frequency band

fc ± B Hz. Here, f is the chopper frequency and B is the assumed radi-

ance-signal bandwidth. The procedure for obtaining the envelope entails

complex demodulation and is block diagrammed in Figure 5 for the ideal

noise-free situation.

The rest of the section is devoted to the justification for and the limi-

tations of complex demodulation as a viable procedure for estimating the

radiance message from chopper-modulated received data. A noise-free

analysis first establishes the validity of the procedure. Next, a suitable

noise model is included in the analysis; it is shown that an undesirable

aspect of the in-band noise is to non-linearly distort the estimate. This

affect will be negligible over most of the rocket data due to a sufficiently

high Signal-power to in-band Noise-power Ratio (SNR) and is significant

only at very low message levels.
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Down-Narwbn
__. translation larow-as z~ Magnitude (t) -

x(t) by t y(t) filter Z(t) operator t z(t)I

Figure 5. Block Diagram of Complex Demodulation Procedure
for Noise-free Signal.

Finally, the specifications of the practical, complex demodulation

algorithm are summarized.

Noise-Free Analysis

The chopper-modulated data channels are assumed to have the following

form:

s(t) = r(t) • P(t) , (7)

where r(t) the radiance measured by the detector - assumed to be low

frequency in nature and bandlimited to B Hz

(t) the chopping waveform

jnw t
ZA• e c(8)

n

wc = 2ff fc = the fundamental radian frequency of the chopper

(An ) are the complex coefficients of the Fourier series.

Let A = Ach e . If the received data x(t) is noise-free,

x(t) =s(t) = r(t) A n Ae jwc t(9)

n

Then, from Figure 5, the radiance estimate iF

r(t) iz(t) I x(t) • e * h(t) . (10)

11



Assuming for the moment that the low-pass filter is ideal and has band-

width /> B, the message bandwidth, then one obtains

r(t) = IA rct) ch e I= A 'ch (1

i.e., the estimate r(t) is a scaled replica of the radiance impinging on the

detector. Note in Eq. (11) that the unknown phase of the chopper funda-

mental is eliminated by the magnitude operator, an advantage that accrues

from the use of the complex sinusoid eic in the frequency down-transla-

tion (in contrast to the use of a real sinusoid sin w t or a co-sinusoidc

cos w t).

The Noise Model and Its Effect on the Estimator

The earlier noise-free analysis establishes the viability of complex demodu-

lation as a procedure for recovering a low frequency, bandlimited message

from a noise-free chopper modulated version of it. A variety of noise

sources, however, contaminate the actual modulated signals. For sim-

plicity these are separated into two parts. One part is the broadband ran-

dom noise caused by background radiance, the electronics and the telem-

etry transmission channel. The other, also assumed wideband, is the

transient interference caused by cosmic ray showers. The received signal

cau then be expressed as:

x(t) = s(t) +A(t) + w(t) (12)

where s(t) = modulated signal defined in Eq. (7),

A(t) - broadband noise representing the sum of background atmos-

pheric radiance, the detector noise and the system noise,

w(t) = cosmic ray interference consisting of randomly occurring spiky

transients.

Note that the two contaminants are very different in the time domain but

are similar (broadband) in the frequency domain. For this noisy, received

signal, the complex demodulation procedure gives

12



= Ach * e • r(t) +IAn. b(t) +Wn.b.(t) (13)

where an ideal filter has again been assumed and ynb(t) and w b(t) are
complex narrow-band components of p(t) and w(t), respectively, defined

by the spectra

Un.b.(f) = U) for fc-0!9 f<f C+0
= 0 elsewhere (14)

and similarly,

Wn.b.(f) = W(f) for fC-0 ! f!S fc + 0

= 0 elsewhere . (15)

Note that both Un(f) and Wb(f) are asymmetric spectra since the cor-
responding time signals n. b(t) and Wn. b .(t) are complex.

On comparing Eqs. (11) and (13), we see that when the received data
is noisy, the estimate r(t) is not simply a scaled replica of the radiance

message, but is corrupted by the in-band noise components. Of course,
this in-band noise energy is bound to show up in the output, since spectrally,
it is indistinguishable from the message energy. What is undesirable about
the form of Eq. (13), however, is that the in-band noise distorts the mes-
sage in a non-linear way. To see this more clearly we proceed as follows:

Let

n(t) = n. b.(t) +Wn. b.(t) = '(t)" e e (t) (16)

In Eq. (16) the noise representation is in terms of the slowly varying
envelope LJ(t) and phase 0 n(t) of the narrow-band, untranslated, noise

process. Then, Eq. (13) gives

13



jec
;(t) Ah- r(t) • e + n(t)

(A hr(t) cos + u(t) cos 0n(t))

+ j (Achr(t) sin Oc + .(t) sin en(t)), (17)

which simplifies to

[2 2 2 1/
rM) Ach * r2(t) + v(t) + 2 Ach* r(t). v(t) cos e( c_ n(t)Jj 1 

. (18)

Equation (18) gives the radiance estimator when the received data is noisy.

By setting v(t)--0 in Eq. (18), the noise-free estimate is r^(t) = Ach. r(t),

which is the same as in Eq. (11).

Of practical importance, however, is the condition of relatively low

noise, i.e., when

SNR = Power in r(t) (19)Power in n(t)

To see the nature of the estimator at high SNR, rewrite Eq. (18) as

1 2t 11/2

The last term in the expression is a random process being a function of the

innut noise. At time t, for the random variable,

22

L 2 (t) (21
Chr (t) (2

if the condition of (19) Is true it follows that

Prob (xt<6) 1 for 0<5 1 . (22)

Hence, neglecting the last term in (20) and retaining the first two terms In

the power expansion, (20) gives

14



r(t) "A chr(t)[ + A (t) Cos ht 9- Bn(t)]

= Achr(t) + '(t) cos (9c - &n(t)) . (23)

Hence, at high SNR, the estimate r(t) contains a scaled replica of the mes-

sage plus output noise.

The conclusion from the above noise analysis is that the complex-de-

modulated envelope r(t) will satisfactorily recover the radiance message

from the IRBS data.

Practical Considerations

In the preceding discussions, an ideal low-pass filter had been assumed to

simplify the discussions. A practical algorithm cannot, however, use an

ideal filter since its non-casual, infinite impulse response only allows the

computation of its output with infinite delay. To make a usable filter, one

must, therefore, relax the frequency domain specifications up to the point

where the performance is still acceptable. Thus, the discontinuous transi-

tion from passband to stopband is modified to provide an intermediate tran-

sition band and rather than insisting on infinite stopband suppression one

specifies a large but finite attenuation. Of course, the only effect of using

such a non-ideal filter is that the higher message-translates in the modu-

lated data and the out-of-band noise will not be entirely eliminated but

acceptably attenuated.

Once suitable specifications have been decided the designer must choose

between the two generic filter types - Finite Impulse Response (FIR) or In-

finite Impulse Response (IIR) - for his needs. The attendant trade-off is

that IIR filters can meet magnitude-response specifications with much lower

filter order than can FIR filters but they invariably have a non-linear phase

response with delay while FmR filters are easily constrained to have linear

phase and no delay. In the present application, it wa6 decided that waveform

symmetry and delay-less processing were uncompromisable requirements.

Hence, an FIR linear phase filter is used.

15



The specifications for the low-pass filter used in Figure 5 are as

follows:

1. FIll, linear phase, real coefficients

2. Passband (± .0274 dB)= .45 Hz

3. Transition Band = 6.0 Hz

4. Minimum stopband attenuation = 50 dB.

The filter was designed by the windowing method using a Kaiser I0 - sinh

window. The resulting filter is close to optimal (in the sense that it is
"nearly-equiripple"). Its 3 dB bandwidth is 2.82 Hz and filter order is 276.

When this filter is used in the demodulation scheme on actual data, a

hitherto unconsidered interaction between the sharp cosmic ray transients

and the filter's long processing memory (.49 sees) comes to light. When a

sharply spiked cosmic ray "hit" is processed, the output exhibits the familiar

and highly undesirable ringing effect. The narrower the spike is, the more

this ringing is like the impulse response of the filter. Obviously, the larger

the spike, the more pronounced is the ringing. Also, if a succession of hits

occurs each within .49 sees of its neighbors, the radiance estimate will be

obscured by a long and persistent (and meaningless) ringing. Note that the

above implied rate is 2 hits/sec which is considered entirely probable.

Thus, we see that our earlier conclusion, that the radiance estimator

Of Fig-ure 5 was satisfactory, was rather hasty. The earlier noise analysis

was based on steady-state frequency domain characterization of the con-

taminants, and since both the stationary noise and the cosmic ray hits are

bcoadband phenomena they were lumped together into one noise process in

Eqs. (I(,) and (17). It is clear now that the spikes have to be removed and

tha' this has to be done in the time domain where the two contaminants are

differentiable.

The spike detection al:orithm has to be some variation of the basic ap-

proach of thresholding the difference between the signal and a smooth ver-

sion of it. To set a threshold, the local signal variance is needed. In the

chopped data, direct application of such an algorithm will not work, how-

ever, since the variance values will be dominated by the chopper energy

and not the spike energy. Thus, the chopper energy must be removed prior

16
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to cleaning. In other words, with reference to Figure 5, the cleaning must,

therefore, be performed on z(t). By then, of course, the ringing would be

present. Several cleaning algorithms were tested by RDP with reasonable

success in detecting and removing spikes.

17



ANALYSIS OF THE DETECTOR SIGNAL PROCESSOR

Initiator: Mr. S. Price

Problem No.: 4060

Project No. : 7670

SUMMARY OF THE PROBLEM AND PRINCIPAL RESULTS

Each element in the Detector Array has an associated Detector Signal

Processor circuit which performs a logarithmic compression of the dy-

namic range of the sensor measurement. Our task is to analyze the cir-

cuit and to obtain a closed form expression for the output-to-input transfer

characteristic. This characteristic would enable one to "de-log" the

channel outputs. Towards this end we have determined:

(i) The "snap-shot" transfer function of the logging circuit as a func-

tion of the output level,

(ii) the approximate pass-bandwidth and gain as a function of the output

level,

(iii) a closed-form expression for the output-to-input transfer character-

istic.

The transfer expression that we have obtained appears to have an

adequate functional form. However, when it is written in the peak-to-peak

input versus peak-to-peak output form to match the calibration data, it

contains a dependence on the actual minimum and maximum output values

rather than on just their difference. Because of this a simpler expression

was heuristically determined. The parameters in this expression were

optimized, via iterative regression, for each detector channel. The con-

verged heuristic transfer expression appears to be quite satisfactory In

explaining the calibration data.

18



PROBLEM DEFINITION

The Detector Signal Processor (DSP) can be represented by the block

diagram in Figure 1, as a cascade of four amplifier stages.

Inu Lgig ad (5.ve8 Output
buffer -- >amplifier andf Leve54) 7 bu ffe r

Stage 1 Stage IT Stage m Stage IV

Figure 1. Functional Block Diagram of the Detector Signal Processor.

The end stages are unity gain, input and output buffer stages respec-

tively, and are used for the usual obvious reasons. Stages II, III are the

key elements of the signal processor. In Stage II, the buffered sensor out-

put v i is amplified with a constant gain when !v1i< lmv and with a loga-

rithmically decreasing gain, with increasing Ivi , when Ivi I>> lmv. The

resulting bipolar output v 0 is then amplified with a constant gain of 5. 68

by Stage III, and also level shifted by 2.5 volts to produce a unipolar posi-

tive output d(t).

Our intent is to obtain an output-to-input transfer expression of the

form,

v. = f(d) (1)

since It will enable the "de-logging" of the channel outputs, to yield the

original sensor output v i . For this purpose it is sufficient to focus our

attention on Stage II, and seek a transfer expression,

vi = g(v0) (2)

because obtaining (1) from (2) involves only a trivial change of variables

defined by

d(t) = 5.68v0 (t) + 2.5 (3)
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Equations (1) - (3) describe the analysis problem. In the next section

we describe the particular analysis methodology that we employ.

ANALYSIS METHODOLOGY

Figure 2 below is the circuit diagram for Stage I.

T C 2

R 2
2 R3 2R3

0__o__C-i

Fig. 2. The Circuit Diagram for the Logging Amplifier

To analyse the circuit of Fig. 2. we initially considered the usual ap-

proach of applying Kirchoff's current law (KCL) at the node at the '-ve'

input of the operational amplifier. The resulting differential equation is

non-linear due to the non-linear feedback from the logging transsistors

T 1 and T 2 * By linearizing around particular output values, one could

possibly obtain a solution. However, at this point we chose to use an alter-

native approach because we believe it gives better insight into the circuit

action. This alternative approach for obtaining a transfer expression is

best explained in terms of its three constituent steps. These are:
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Step 1: The Equivalent Circuit

Since the logging transistors are acting as variable resistors which

change the gain of the stage in a non-linear fashion, the first step is to

replace T1 and T 2 by their incremental resistances R and Rv, pnp v, npn
which are exponentially decreasing functions of the output voltage.

Step 2: The Family of Frequency Response Functions

Conditioned on a particular value that the output assumes, a linear

analysis is performed which yields a "snap-shot" frequency response.

Moreover, the set of values that v0 can assume, defines a family of fre-

quency response curves. The time varying function, v0 (t) can then be

viewed as the output of a system whose frequency response is making tran-

sitions from one member of this family of responses to another with time.

Step 3: The Approximate Output Voltage Dependent Gain and the Transfer

Expression

For input vi(t) band-limited to be within the minimum bandwidth that

the varying system can ever assume, the system transfer function is ap-

proximatable by a frequency-independent but output-voltage dependent

"gain" (4 G(v 0 )), i.e.,

v0 (t)
vi(t ) = G(v0) .(4)

Henc e,

v i = G- (v0 ) • v0 = g(v0 )

This is the desired output-to-input transfer characteristic, mentioned

earlier as Eq. (2).

In the next section, the analysis outlined in Steps 1 -3 above, shall be

carried out.

CIRCUIT ANALYSIS

As outlined in the previous section, the analysis will be performed in three

steps, as follows.
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Step 1: The Equivalent Circuit

In Appendix Al, the incremental resistance, R v, of a pnp transistor

used in the utransdiode logging configuration is derived. The result is,

-V E/E 0
Rv(vE) R 0 •10 ,/(5)

where

R0 = 113.93 MO (6)

E0 = 72.05 mv (7)

We can define the incremental resistances of transistors T and T2 in Fig.

2 in terms of R V (v E ) of (5) as,

'D for v 0 :
R=v (8)

v'pnp(0 R (v0 ) for v0 > 0

and

Rv, npn(V0) (Rv(IV 0 1) for v 0  0
(v = (9)

Op * for v0>0

Formulas (8), (9) reflect the fact that of the two transistors T 1 and T2,

only one is active depending upon the polarity of v0 .

Another simplification of the circuit in Fig. 2 is that the T-network in

the feedback path can be replaced by an equivalent resistance,
2
R 2

R T = 2R2 I R3(10)

3

For R2= 10 KO and R3 = 57.47(l, formula (10) gives,

RT = 1.76 MC. (11)

Using Eqs. (8), (9), and (11), the equivalent circuit for Stage H1 of Fig.

2 is as shown below in Fig. 3.
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C2 = 180 pF

Rv, npn

R
Rv, pnp

R T =1. 76 MO

C1 4UF R 1 10 KO_- v 0

Fig. 3. The Equivalent Circuit for the "logging" Stage of Fig. 2

Step 2: The Family of Frequency Response Functions

The advantage of the equivalent representation in Fig. 3 of the logging

circuit is that instead of analysing the non-linear feedback explicitly, we

can now perform a linear analysis of the fixed-elements, linear circuit

that results for each value that the output assumes. Thus, at v0 = g volts,

a "snap-shot" of the varying frequency response is obtained. Moreover,

the set of values that the output can assume defines a family of frequency

responses for the circuit. Useful simplifications result from this approach.

Let

Rb= RTRvpnp Rv, npn

= the equivalent feedback resistance. (12)

Note: 11 is the parallel combination operator. As explained above, at

v0 = g a fixed value, Rb in (12) has a constant value. For the circuit of

Fig. 3, we can then define the two impedances,

1(13)

f jwC 1
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Zb ( )Rb (14)

and the circuit can be redrawn as in Fig. 4. The notion of a 'snap-shot'

analysis can now be elaborated.

V.bI
v i o---- Zf

v0

_PFig. 4.

The impedance representation of Fig. 4 has been obtained at a particular

value of v0 = g. Still this does not stop us from obtaining its transfer func-

tion, since we can always consider small enough inputs such that the vari-

ation in Zb can be arbitrarily bounded. It is in tiis sense that the transfer

function obtained this way is a "snap-shot" of a varying frequency response.

For the inverting op-amp circuit in Fig. 4, the tcansfer function is,

Zb s2+1 -sR + R
11

sRbC1

(1 +sC2 Rb)(1 +sC I R1)

The magnitude of the frequency response can be obtained from H(s) as.

HM(f) =g L f2 2 (15)

where
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-- I

g 2rCI1 = 8.84 x 10 4  (16)

and the two system poles are,

a =3.9789 Hz (17)

and 21rClR 1

b C21 (18)

Formulas (15) and (16) indicate that the cut-on pole at f=a is fixed at

4 Hz, while the cut-off pole at f=b varies with Rv(g), i.e., its location is

a function of the output level.

Returning to the frequency response in Eq. (15), it is easily shown

that the maximum occurs at the frequency,

fM = a (19)

and the value of the maximum transfer Is

H ( (20)HMfM) a+b"

The important conclusion from (19) and (20) is that both fM and HM(fM)

being functions of b, are themselves functions of the output voltage.

From the above "snap-shot" frequency response analysis of the circuit,

we find that "b" is the critical parameter of the circuit. From (18), b, in

turn, depends upon Rb, the equivalent feedback resistance, and it is this

critical variable that we shall now analyse.

The equivalent feedback resistance,

Rb = RT [Rvpnp 11 Rv ,npn = RT1Rv( Iv0 I) (21)

since only one transistor is active depending upon the polarity of the out-

put v0 . From this expression one can immediately identify three distinctly

different regions of operation for the circuit as follows:
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Region I - Constant Gain Region. In this region, RV(v 0) )> RT, i.e.,

the output level Is small enough that

-Iv o I/EoRv(V) = 0  0 0 RT.

Then, Rb mi RT and from Eqs. (14) through (16) it follows that,

b = upper 3 dB cut-off = 502.3 Hz

fM = V a ' = 44.8 Hz

and

HM(fM) = 174.58

i.e.,
HM(W) HM(f M ) , a<w<b .(22)

But, - C A
HM(fM) a+b C2 RbCR

and since C2 Rb-< C1 R1 ,

IlIM(f R bR1 (23)

M c1R 1R,

and Eq. (22) becomes

R b
HM(w ) at R (24)

This is a significant result. It states that for vi(t) bandlimited to (a, b)min

the "gain" of the bandpass circuit is approximately independent of frequency.

In other words, the capacitors, C1 and C2 , have only a marginal effect on

gain. They primarily perform waveshaping and high frequency noise sup-

pression.

Equation (24) gives us the output voltage dependent "gain" that we were

seeking in Eq. (4). Thus,
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- G(v0 ) H(w) (25)

the -ve sign being due to the inverting configuration of the operational am-

plifier. Therefore,

R b RT R

v Vi 1 v 10 - v / E 0

Gk 12 -v fE
i-- V11l2 0, (26)

where G1 = HT/R, and G2 = R0 /R 1 .

Region II - Logqrithmic Gain Region. This region is characterized by

R(V0) << RT, i.e., the output level is large enough that

R (v )=R -010-Iv0 I/E0 << RT.

In this case, Rbz__Rv(v0). Again, b, fM' and HM(fM) can be computed from

Eqs. (14) - (16) for a fixed v0 . The important observation, however, is that

b I REGION 11 I REGION I

and, therefore, b and fM can only be larger than the small signal values of

Region I. Similarly, HM(fM) can only be smaller than in Region I.

Region III - Transition Region. This region, of course, corresponds

to those values of the output for which Rv (v0) - R. The amplifier has

neither constant nor logarithmic gain and hence the frm "transition re-

gion.*

The plot of Rv(V 0 ) , RT, and Rb versus v0 , below, shows the three

regions.

27
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R
R I (v

s
i Rv(VO)v --RT R T

n

c

dB I REGION
III

Output voltage v 0

Fig. 5. Plot of the Feedback Resistance, Rb' versus the Output Voltage, v0

We now have all the necessary information to complete our task of ob-

taining a closed-form expression for the transfer characteristic of the

logging circuit. This is done next in Step 3.

Step 3. The Approximate Output-Voltage-Dopendent Gain and the Output-

to-Input Transfer Expression.

The family of frequency responses found in the previous section can

ue plotted for some typical values of Rb as in Figure 6.

In this plot, note that in the frequency band (4,502.3) Hz, the responses

are flat to within 3 dB of their respective maximum values.

This frequency range, of course, is the pass-band fonr small output

levels. It follows that if we consider input signals which are bandlimited to
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within (a, b)min then for such input the frequency response can be approxi-

mated by the maximum value, HM(fM) with a known bounded error of : 3 dB

and the transformation d(t) = 5.68 v0 (t) +2.5 can be used to obtain v vs. d

from Eq. (26). Thus,

S(d -2.5) (d-2.5) * 1 0-(d-2.5)/5.68E 0
_ 5.68G 1 5. 68G 2

2.5 1 2.5 2.5/5. 68E 0  -d/5"68E0
i. e., v i 5.68G, 5.68G d +5.68G2- 10 10

1 2.5/5. 68E 0  -d/5.68E 0

5.68G2 10 d 10

-d/e0 +-d/e 0

or v. a0 + a1 d + a 2 10 a3 ' d • 10 , (27)

1

where e 0 = 5.68E0  a1 =  568G1

2.5 2.5 2.5/5.68E 0

5.68G 1  2 5.68G 2

1 2.5/5.68E 0

3 =5.68G
2

Finally, the transfer expression in terms of peak-to-peak input and

output values is,

v, a1 d + a2 [-dh/e 0  d01

+ a3 [dn -dh/eO - d 1 10-d/e , (28)

i.e., due to the non-linear form of (27) the peak-to-peak transfer expres-
sion requires a knowledge not only of dp-p dh  d, but also of the actual

minimum and maximum output levels, dh and d,, themselves. This infor-

mation has not been recorded in the calibration data. Therefore, to fit an

30
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expression to the calibration data, we heuristically fit a function of the

form of (26)

v p-p+ x 1 *d • 10d p - p / x 2  (29)
i,p-p x3  P-P

The constants xl, x2 , and x3 were determined via iterative regression for

each channel. Results of the fit for the channels SI + through S9 + are in-

cluded as Figures 7-15.

REFERENCES

Sheingold, Daniel H., Ed., Non-linear Circuits Handbook, Analog

Devices, Inc., Norwood, Mass., 1976
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APPENDIX Al

The expression for Rv, the incremental variable resistance of the logging

transistors can be obtained as follows: For the grounded-base configura-

tion (known as the "Transdiode" logging configuration) the modified Ebers

and Moll equation for the collector current is

lo° VE

Tc ~ v/KT ) c eWc/KT~i qv ~ e /M KT-)

where vE = Emitter-base voltage

v = collector-base voltage

aN = forward current transfer ratio

aI = reverse current transfer ratio

M.> 1 are the "uncollected" current components that flow through
3

the base circuit

q = 1.60219 x 0-19 C; K = 1.38062 X 10-23 J/K

T=OK =c +273.15

Since v -" 0 due to the virtual ground at the -ve terminal of the op-amp
c

I = aNIES(e 
-

T - KT for c >> 1
E = N IES

Now a N is close to unity and fairly constant over the entire range of cur-

rents. Neglecting the last term (which for a N = .99 contributes (1/4) my

offset),

I [
V !T- x 2.303 x log = E0 log F

E q I ES 0 ES
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Then,

dVE == E0 ... KT
R = E= incremental resistance at E 2.303

i.e.,

R KT _ .031292928
v quNI /eqvE/KT I ES vE/.031293ES\~ - 1 e - 1

R * 1
R0  1v E/E 0  '

10 '-1

where

R - 03129292737 and E0 = 72.054627 millivolts.0 ES

R
v

Approximation

R 0
1T0

100
Ct R~.-

0

E0  2E 0  3E 0  4F 0  5E 0

Base- Emitter Voltage
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Rv is plotted above as a function of the emitter-base voltage, v For

v E ; E0, the resistance falls by a decade for every E0 increase in vE .

This fundamental property is being used to produce the logarithmic com-

pression in the circuit. Observe that for 0 < v E < E0 . the resistance de-

viates from the above rule. In fact, Rv is infinite for vE =0 (the transistor

is cut off).

Neglecting the '1" in the denominator, which is valid for VE/E 0 > 1,

1 -v E /E 0R 1 E0R =R 0  10

10

This effect of the approximation is that the true R (solid line) is beingv

approximated by the dotted line for 0 < v E < E0 .

We now need IES to compute R0 . In the specifications sheet provided

us, the base-emitter junction has been characterized, as shown below, by

(.5MA)-3.301 2 ,& /

T=90X2C

(I andlog I (.1MA)- 7 . T250C

E 3

1ES I T = 900 C

'ESI T= 25C -

.18 .31 .44 .57

Vbe volts
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the four points shown on the IE vs. vbe graph for T=25"C and T=905C.

Since the circuit operates at T =90C, we are interested in IES I

This is the intercept of the upper line. Let iT

XTVI=3v and yr=lox1=be IT = T  
E y l~ IiT=,

Then, we seek to fit the line Y" = mx 1.+ C. For T =90'C, the scope, m,

and intercept, c, are obtained using points #1 and #2 in the junction char-

acteristics. The resulting equation of the line is

Y9 0oC = 14 .22 69x9 06C - 9.56122

Hence,
= 10-9.56122 = 0.27465 x 10-9'ESJT 9 ~~ 0 =02451

and substituting into formula for R0 , one obtains,

8
R0  1.1393 x 10 = 113.93 MO

Also. E,= 1/m 70.289 my, directly from the slope m'.

Compare this value of E0 with the value E0 = 72.05. obtained earlier

from the physical equations describing the transistor.
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A MODEL FOR SATELLITE CHARGING AT HIGH ALTITUDES

Initiator: A. Rubin

Problem No.: 4017

Project No.: 7661

Satellites in geosynchronous orbit have been found to charge up electrically

during magnetic substorms leading to circuit upsets and malfunction of

satellites. To understand the physical processes taking place it is neces-

sary to calculate the details of the spacecraft charging process.

A computer program was developed to conduct numerical simulations

of plasma interactions with a satellite, assuming the satellite to be repre-

sented by an infinitely long cylinder and treating the plasma as discrete

particles. The system is assumed to be uniform along the axis of the satel-

lite. A number of features of the actual satellite are incorporated into the

model with as much flexibility as possible to accommodate a wide range of

conditions.

PARTICLE MOTIONS

The particles are treated as discrete objects rather than as fluid elements

but do not necessarily represent individual ions or electrons. The current

design associates with each computer particle a cluster of identical elec-

trons or ions so that the several million particles of the actual plasma are

represented by a few thousand computer particles. In contrast to an earlier

model with spherical symmetry, the parameter relating the number of real

particles for each computer particle is a constant for all particles.

The particle motions are determined by the electric field produced by

the satellite and by the particles themselves. The program allows the

satellite to be charged to an arbitrary voltage and also allows the potential

in the plasma far from the satellite to be set, thus influencing the rate at

which particles emerge from the far plasma and enter the region near the
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satellite. The electric field is calculated from the electric potential ob-

tained by solving Poisson's equation in a cylindrical geometry.

Thus, the equation to be solved for the potential 0 is:

1 52 ( = -
4 + 2

5r) r 2 502

assuming uniformity is the z-direction. With a coordinate transformation

S = en r, this equation becomes:

520 +2 _ r 2

S 2  N9 2 '

which is the form for rectangular coordinates, using a modified density
2

This transformation is effected by choosing the radial gridpoints to

have uniform increments in Pn r, rather than as an explicit coordinate

transformation. A standard Poisson-solving routine (8)for rectangular

coordinate systems is then employed to find the potential, using the modi-

fied charge density. This approach also requires an auxiliary routine to

soive for the potential on the satellite itself, to provide a necessary bound-

ary condition for the Poisson solver. The auxiliary routine uses a mo-

ment 4rri's expansion to determine the satellite potential in terms of the

charge distribution and the constant value assumed for the potential in the

far plasma region.

There are also provisions for allowing a uniform magnetic field which

has the field aligned along the cylinder axis.

Particles are "lost" from the system by striking the surface of the

sattiite or escaping from the region studied, and are added to the system

uy a variety of emission processes on the satellite, described below, or

by entering into the region studied from the surrounding plasma.
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SECONDARY EMISSION

Ions or electrons which strike the satellite are assumed to generate sec-

ondary electrons, taking into account both the energy and angle of inci-

dence of the impacting particle to determine the yield of secondary elec-

trons.

The equation used to evaluate the secondary emission for incident

electrons is:

1 - exp (_(x0 E)l)
L C( oE)n . exp (C [1-cos e])

where 6 = number of secondary electrons

E = energy of incident electrons

0 = angle of incidence with respect to normal to surface.

The parameters C0 ' CV and X0 can be chosen to be different over the

angular sectors of the satellite to reflect the properties of different mate-

rials with respect to secondary emission.

For incident ions. the equation used is:

a 0/E sec 6

- +E/X I

where a 0 and X I reflect properties of the materials in each angular sector

of the satellite.

For either incident ions or incident electrons, the emitted secondary

electrons are assumed to have a Maxwellian velocity distribution:

2 (2)f(v) -v exp( -

The velocity dispersion "b" for the emitted electrons can depend on the

species of incident particle, and its value can easily be changed at execu-

tion time.

The direction of the velocity of the emitted particles has a cosine dis-

tribution in angle with respect to the normal.
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The corresponding process for ion emission (sputtering) has not been

treated, as the magnitude of that process is relatively small.

BACKSCATTERING

Inelastic collision of electrons with the satellite is treated as a backscat-

tering process, again taking into account the energy and angle of incidence

of the impacting particle to determine the yield. The equation used here is:

A E cos6

O 0(E c  + ')~

where number of backscattered electrons

E = energy of incident electrons

0 = angle of incidence with respect to normal to surface.

The parameters A0 and B 0 can likewise be set to different values on the

different angular sectors of the satellite.

The energy of the emitted particles is directly related to the energy of

th- incident particles, according to f(v) v3 /E 2 , for incident energy E,

provided me C/2 < E, and again a cosine distribution in angle is assumed.

As with the sputtering process, backscattering of ions is neglected.

PIH()TOEMISSION

Th- eraission of photoelectrons from the satellite surface is treated in a

manner similar to secondary emission, taking account of the incidence

an.e of sola r illumination and the photoemissive coefficients of the differ-

ein sectors of th, satellite to determine the photoemisslon yield. Thus,

the relevant formula is:

E = k 0 f(cos e),

where c = number of photoelectrons per unit time per unit surface area

f = solar illumination flux

= angle of solar Illumination with respect to normal to surface.
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The solar flux is essentially zero or one, depending upon whether the sec-

tor is in shadow or not, while k0 is a photoemission coefficient whlch can

be set to different values for different sectors of the satellite.

Currently, the velocity spectrum of the emitted photoelectrons is

assumed to be a Maxwellian with the cosine angular dependence previously

assumed for secondaries.

PARTICLE BEAMS

Corresponding to the particle beams on the satellite, there is a routine

which emits particles from a localized region of the satellite in a beam

pattern. The beam pattern is given according to a 1/00 cos e/ 0 law, for

0 ! 00 and the velocity distribution of the beam particles can be

chosen to be either monochromatic (v =v 0 for all particles) or Maxwellian

(f(v) ccv 2 exp (-v2/2v2)). There are effectively separate particle beams

for ions and electrons, and, in addition to 0 and v0 , the location, aiming

direction, and current for each beam can be specified.

An option is available by which the total charge emitted by the beams

can be linked to the total satellite charge, thus influencing the potential on

the satellite.

ELECTROSTATIC POTENTIAL CALCULATIONS FOR A CYLINDRICAL

MODEL

Introduction

Recent investigations of spacecraft interaction with the surrounding plasma

have led to the development of a two-dimensional model for numerical

simulations. This model treats the spacecraft as an infinitely long cylinder

and studies the motion of particles in the cylindrical annulus between the

spacecraft and an arbitrary boundary at some distance into the plasma.

To represent the motion of the particles properly, it is necessary to per-

form calculations of the electric field which Is established by the distribu-

tion of charges in the region and by imposed potentials on the spacecraft.

This section describes the potential calculation method that has been im-

plemented.
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Poisson's Equation

For a system with translational symmetry in the Z-direction (along the

axis of the spacecraft cylinder), Poisson's equation is:

1 (r ) 0 +1 52, P-r, (MKS units)

r 5r T r2 502

where the electrostatic potential is 0, and p is the charge density (per

unit area). The charges are effectively infinitely long rods in this repre-

sentation and interact via a logarithmic potential.

Converting the above form of Poisson's equation to suitable form for

a discrete grid gives:

2r. r(r r 1  r____1____

D i . -j -A----

1i,j+1- 20,j - 0i 2

+ 62 =

where 0,' j  0(ri,j), pi,j = P(rj)' =j - ej_i, At= rt+1 - ri, and
D r i '2 r I

For a uniform interval in the radial grid points, this form produces co-

eflicients of 0ij' oflj which depend on i. However, if A, is propor-

tional to ri, these coefficients are constant.

Thus, letting A -uri, so that D, = (2+a)ri, Poisson's equation

becomes:
2

of. - 20 + 0 -rp..2(1 +-a) _ 20j., + 0 i 1  6 52. j

i 2(2 +a) i+l, + 1

This formulation corresponds to a transformation of the radial coordinate

according to S = 0/ r, which gives

20 + 2 0

;s 2  M82 ,

where - r 2 p for the transformed density in (S, e) coordinates.
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The charge density is determined from the number of charges within

a particular grid cell, but each charge is treated as being uniformly dis-

tributed over a cell in (S, 0) coordinates, rather than (r,6) coordinates.

This is implemented by assuming a charge density distribution p = Cij/r2

for each cell, normalized according to fpr dr dO = qj,' and then using the

average of r2 p over the cell for the right side of Poisson's equation. Thus,

r 2 pi,j is replaced by -qi, j/[6 e (1 +a)] in the formula above.

Note that different charges within a cell do not interact, and only the

net charge within a cell contributes to the potential. Thus, the grid pro-

duces a potential that is both "softer" (reduced short-range interaction)

and "smoother" (spatially averaged) than the actual interparticle inter-

action.

Boundary Conditions for the Model

In solving Poisson's equation, the boundary conditions must be specified

at some radius in the far plasma (R.B) and over some surface on or within

the spacecraft. The spacecraft itself is modeled as a conducting cylinder

completely surrounded by a dielectric layer. This allows the charge dis-

tribution on the surface of the spacecraft to be that determined only by

particle impacts and emission mechanisms, yet allows for the specifica-

tion of a unique fixed potential for the spacecraft. Conceptually, therefore,

the two boundaries are concentric cylinders with a constant potential on

each. However, neither potential is necessarily constant in time. In par-

ticular, if the spacecraft potential is not fixed, it will "float" with respect

to the outer boundary potential, depending on the charge distribution in the

intervening region.

If the boundary condition is left solely in terms of the potential on the

interior conducting cylinder (r = Ri), then the routine for solving Poisson's

equation must also involve the conditions at two interfaces: the conductor/

dielectric interface and the dielectric/vacuum interface. However, if the

interior boundary condition is transformed into a specification of the po-

tential on the outer surface of the spacecraft (r = Rp ), then Poisson's equa-

tion need only be solved over a homogeneous region.
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This transformation can be accomplished by solving for the surface

potential for the case of an isolated charge, given the potential at the

outer boundary and the specification of the potential on the interior con-

ductor ('floating" or fixed potential). The solution for an arbitrary charge

distribution is then the appropriate superposition of solutions for isolated

charges. (This is essentially a Green's function approach.)

For a charge q at (re,0c), with 0= (0 at r =R (the inner conducting

cylinder) and 0=0 1 at r=RB (the far plasma), the potential at (R, e) (on

the surface of the spacecraft) is given by:

0(1 =a 0 + a20 + a3 q + .cos n(O-c)

n=

{ ( + q _ (C + (-11( /R7,) n r nP B 2 17nc/ L nwhere a p aP- (R/R / B 0 1R -a,

13 -7(Rp/R) +RR. R) + 2 (/ RB) p

a (C/%) + ~ -a Pr ( and3 xP~ ( PIt ) (1 1/Rp ) 2 ''B

/2 n 2( n~ 2 n : n

R~~~ + r (Rn - itn - X (it R) (- ") '"-R')-, ' + Rirn 2rrnr n (R 2n + l2n R2n- R2n_ ( X12n 2~n)(R2n + R 2n

c _( \ )p \ p i/

[n principle, the summation should t)e extended to n * but on a discrete

grid it is restricted according to the number of angular sectors N (= 2r,/6 ).

For the case of a floating potential on the spaceocraft, with a total charge

(4 on the interior cylinder,
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Some modifications to the above expressions are required to accom-

modate the convention of having the charges distributed over each cell,

rather than as discrete charges. This is accomplished by a superposition

of the above solutions for a charge density

P= q 2
P 2+ ct(1+) r

over the region rc/(1 +a) rr O <6  +6. This produces a poten-

tial J(R e), with

R(R, I = a 10 0 + a 2 1 + b 1 --2

+ --q6 cos
2ffc6Pm(1+ot)t 3 2) 2)

n=1

X n[1-(1+ 
j

k~p/ (1+,) n ,

where aand a2 are as before,

b 1 -

An ~n + (R B ~) -~~q ,

and - (R n_ Rn) + ( + Rnn)]
_ x \m( PB + PM (\ p/

B 2n - R 2n 2 2n+\ ~n

2n R P -R 1 )+ (Rp+Ii

The condition for a floating spacecraft potential then becomes
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~O01?TX %?() 4R)] ~ L/ ]

The solution is now completely formulated, given a method of solving

Poisson's equation in rectangular coordinates. For this particular appli-

cation, Hockney's (S) Fourier Analysis/Cyclic Reduction Method was em-

ployed. The Fourier transform routine for Hockney's programs is also

used fo obtain the superposition of solutions for setting the boundary po-

tentials at r= R
p
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SPLINE SMOOTHING OF RADIANCE MEASUREMENTS

Initiator: Mr. S. Price

Problem No. • 3036

Project No.: 7670

The task under this problem number was to develop one-dimensional and

two-dimensional flexible knot least squares spline smoothing algorithms.

These smoothing techniques were applied to infrared radiance measure-

ments as a function of galactic latitude and longitude.

Least Squares Approximations and Splines

This section deals primarily with one- and two-dimensional least squares

spline approximations to univariate and multivariate data, but the principle

applies in general to smoothing measured data by approximating the data

with . .ptimal vector from a designated vector space. In the ease of

cubic splines, the designated vector space consists of twice continuously

differentiable functions which are locally cubic polynomials. In the case

of least squares polynomial approximations the designated vector space

consists of all polynomials of degree ! n.

1. One-Dimensional Cubic Splines

A cubic spline approximation of a function f(t) defined on an interval I

consists of local cubic polynomial approximations to f(t) over subintervals

of I in such a way that the local approximating curves over contiguous in-

itervals join together in a smooth fashion.

Definition: Let P = [x 1. x2 , .. ., xn) be a partition of the interval [a, b].
i.e., a=xl<x2< .. < x n ;b
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A function s(t) which is twice continuously differentiable on [a, b] and

is a cubic polynomial on each sub-interval (xi,xi+l), 1< i<n-1 is called

a cubic spline. The x1 ,x 2 , ,x n are called kmots for the spline interval

[a,b].

Let S(P, [a, b]) denote the set of all cubic splines with knots P =x 1 ,

x2 , ... x n) over the interval [a,b]. If P and [a, b] are understood, then S

replaces S(P, [a,bl).

There are two basic uses of cubic splines - interpolation and smooth-

ing. Cubic spline interpolation consists of finding a function s in S satis-

fying

s(x). Yi lin (1)

for a given set of pairs (xl,Yl), ... ,(Xnyn). A fundamental result of

Spline Theory states that there exists a piecewise cubic function s satisfy-

ing (1) and, furthermore, the solution s is unique if the additional con-

straints s'(x1 ) = c and s'(xn) = d are introduced. The problem of least

squares cubic spline approximation consists of finding a function s in S

which minimizes

M

24__ 'S(t ) yj)2 (2)

for a given set of data values (tiy.), 1! j !5 M.

Both the interpolation and the smoothing problem become more mathe-

matically tractable by introducing vector space terminology. We observe

that the sum of two cubic splines is again a cubic spline and a scalar times

a cubic spline is a cubic spline, that is, S is a vector space. The following

result (Prenter, Splines and Variational Methods, Wilcy-Interscience,

1975, p. 80) is fundamental for the computation of spline fits.

Theorem: The dimension of S is n+2.

Consequently, if cc 2 , ... ,c n+2 is a basis for S then the solution of

(2) consists of finding constants al n . an+2 , which minimize 2

where
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r 2 2 c 1 (t 2  c 2 (t 2  *. c+ 2('2) a 2 (3

We can rewrite (3) as the matrix equation, y = CA+c, and in this form,

the desired least squares solution is given by
-*1

A=(ctC) C'y

or, alternatively,
+

A=C Y

where C = (ctc) C is the pseudo-inverse of the matrix C. Thus, the

solution of the least-squares problem can be reduced to selecting a com-

putationally convenient basis for S and then finding the pseudo-inverse of

the matrix C which is generated by the basis functions. The basis func-

tions found to be most convenient are those referred to as 13-splines. In

the following, we introduce the definition of splines and B-splines using

the approach of deBoor. For deBoor the concept of spline is more general

than that introduced above, but the two notions of spline coincide for twice

c, ntinuously differentiable cubic splines. Followving deBoor, a least

squares spline approximation is developed for splines of general degree

rather2 than an algorithm restricted to piecewise cubic polynomials.

Ddinition: (deToor, p. 108). Let t = (t.) be a non-decreasing seqv',nce.

The i th-normalized B-spline of order k for the knot sequence

t is denoted Bik. and is defined by the rule

B i,k,(x) = (tl k - ti) Eti ... ti+k j (. - x)+k-I

for all real numbers x.

N,tes: (I) for cubic splines, k=4

{2) Lti. I t ...., t i+k] is a divided difference and may be com-

puted in the case of distinct knots by the rule,
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[t i , ti+1 , ... ti+k ](f) 1 (ti til (t -~ ti )•• (t i - Qi~

f(t i + )

+ ( t+)(ti 1 -t.+ 2 )'''(ti+ I -tik)]

+ 
f(t. .k )

+ [(t+k - ti) (ti +k - ti+l)" " "ti+k - ti+k- 1)

(3) the definition of deBoor permits knots to coalesce; each case

of equality of adjacent knots reduces the smoothness require-

ment at that knot by 1; the cases treated herein deal only with

distinct knots.

Remark: Let the knots for the space S be xX 2 , x3 ,.. x. To generate

a basis for S, the above set of knots is extended (in a somewhat arbitrary

manner) and the normalized B-splines generated for the extended set of

knots yielding the desired basis. More concretely, let A be some positive

number. Define the extended knot sequence t i t 2 . . tn+6 by

t l = x 1 - 3 A ,  t, =x 1 - 2 A ,  t 3 =x l - A ,  t3+ = X 1 l ! .i ! n

tn+3+ =x n + A 1 1Kjn3

and let Bi, 4 ,y(x) be the normalized B-splines for the extended knot set

F = ttlt 2 .... t n+63. Set B(i,x) = B 1,4,(x). As a consequence (f The-

orem IX. 1, deBoor, p. 113, we have the following result.

Theorem: B(lx), B(2,x), ... ,B(n+2,x) is t basis for S.

Note: The fact that t 1 , t 2 , t. tn+4 , tn+5 , tn 6 are arbitrary is discussed in

deBoor, p. 114.
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I. 1 Least Squares - Gne-Dimensional Cubic Spline

For observed data (tl,Y(tl)), ... , (t eY(t e)) and specified knots x,X 2 .... x,

the least squares cubic spline approximation models the data as:

Model: S(t) =a 1 B(1.t) +ta 2 B(2,t) +... +&n+2 B(n+2,t) + r, where

B(1, .), ... B(n+2, .) are B-splines. Incorporation of observa-

tion data into the model yields.

LY(t 1 ) FB(1,t 1 ) B(2,t 1 ) ... B(n+2, tl]"-ai1

Ytt2 ) B(1,t 2 ) B(2,t 2 ) ... B(n+2,t 2 ) '2%

y(t e) B('t e) B(2t) B(n+2et na+2

S Ba + c.

The least squares solution & of S Ba + c is given by

& = (BtB) 9tS

1.2 jj 'thm for Solution of Least Squares Cubic Spline Problem

(j) Specify Knots; (iv) Read observation data;

xii) Extend Knots; (v) Write S. B;

(iii) Defiac basis functions; (vi) Solve S = Ba +c

A computational consideration is that for large data sets, the compact

support of the basis functions can be exploited in the implementation of

Step 6.

Direct implementation of the definition given above for the B-splines

may lead to numerically unstable expressions involving the various differ-

erhce quotients as pointed out by deBoor. He suggests rather that the re-

currence relations,

B (x) t ! tj+1

S 0 , otherwise
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x -t. ti~~

B i,k(X) =tik_ t Bi,k-l(x) +t -t i+ 1  Bik-l(X) (*)
i+k-lI 14f-+ - +1

be exploited in the generation of the B-splines.

RDP used the above algorithms to generate a Fortran program

which does spline fits up to order 20. These spline smoothing programs

have been run successfully to approximate infrared radiation measure-

ments and to generate calibration curves for infrared detectors relating

measured voltage to measured radiance.

11. Two-Dimensional Spline Approximation

The object of this section is to describe a least squares error spline ap-

proximation to surfaces Z = f(x,y). A basic assumption is that the surface

is defined over a rectangular region in the xy-plane and that a rectangular

grid of knots is appropriate for the approximation scheme. The algorithm

employed assumes that the knots in the x-direction and the y-direction are

independent. If M(Y), ... , Mn(y) are the B-spline basis functions in the

y-direction and L1 (x), ... L Ln(x) is the corresponding basis in the x-direc-

tion then the model is

z(x,y) EE a ijMi(Y) L(x) + f . (0)

The basic scheme in the algorithm to be presented is to reduce the two-

dimensional spline separately to two one-dimensional spline fits (after Call

and Judd). To describe the problem, let

Xl'X2'" Xnl ' Y2' '  ym l

be the knots in the x and y directions, respectively. Further. let

Ll(X), L 2(x) .... n(x) , MI (Y), Mi2(Y)' N1. , M (Y)

be the corresponding B-splines. If the observations are
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x 1 , x 2 ,•. x n
Yl'Y2 ' ..'"Ym

z (Xl, Y Z(Xn, Y1)

z(xl,y 
2 ) .. ,z(x,y

2 )

Z(Xl, Ym), •.,Z(Xn, Ym )

then the matricial representation of (1) using the measured data is:

z(x1 y l  -.- Z(Xn',Yl ) -

Z(xl,Y 2 ) • Z(XnY 2 )

Lz~l M)..z (x ,ly2

M(y 1 ) .* Mm(yl) all a12 ... a1n Ll(X1 ) .. LI(xn)

MI(y2) ... 1 m(Y2  a2 1 a22 a2 n L2(xl) L2 (xn)

LT1(Y M (Ym  am1 am 2  amn Ln(X1  L n(xn)

or symbolically,

Z = MAL t  (2)

T'he object of th, least square fit is to find the coefficients a.. so that the

sum of the squares of model values minus the fit values is a minimum.

Algebraically, the solution of (2) can be effected in the following manner

Z = MALt

'-1 t- (M tM)- Mtz = All'

- (MtM)- MtZ} = LAt (Continued)
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A = (LtL) L't (MtMN) Itz] (3)

where Lt is the transpose of L. Using the notation M + for the pseudo-in-

verse of M, i.e.,

MI - (MtM)- 1 Mt

the solution (3) above can be written simply as

A = [L+ M+Z (4)
+

For the fact that M Z yields the least squares error solution to the prob-

lem Z = MA+ c see, for example, Applied Regression Analysis by Draper

and Smith. To generate the values

Z(xy) = E aiMi(y) L.(x)

the following information is needed, in addition to the coefficients a.., the

knots in the x-direction and on the y-direction and a subroutine which gen-

erates the basis functions L1 .... Ln M 1 ... , Alm corresponding to the

given knots.

RDP successfully implemented the above two-dimensional smoothing

algorithm and applied it to infrared measurements in the galactic plane.
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STUDY OF ELECTRON DENSITY PROFILES

Initiator: Mr. J. Aarons

Problem No. : 4083

Project No. : 4643

A magnetic tape from the Arecibo Observatory containing high resolution

electron density measurements was received from thc initiator. N(h) data

for two nights were analyzed to study the variation of electron density as a

function of altitude. A preliminary study of the data showed the existence

of large and small scale fluctuations. To study the large scale fluctuations,

the electron density was determined at a sequence of distinct height inter-

vals and plotted as a function of time. A spectral analysis of these time

series was effected using the FFT technique to determine the period of

these waves. For small scale fluctuations, electron density profiles were

low pass filtered and the spectra of the residuals analyzed using the Welch

averaging technique. Numerical integration of the N(h) profiles was per-

fvrmed to compute total electron content for comparison with ground based

measuremients.
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SIGNAL ANALYSIS OF ROCKET DATA

Initiator: T. Conley

Problem No.: 4854

Project No.: 7660

This problem was to develop a computerized system, including appropriate

computer programs and operator instructions, to digitally filter (smooth)

unwanted noise from rocket measured radiometer and photometer data (in

digital form), correct data for rocket aspect, and digitally differentiate

smoothed data to obtain volume emission rates. Current ICECAP rocket

radiometer measured data is contaminated by noise induced by the telem-

etry recording and digitization processes and which leads to erroneous

volume emission rates when differentiated.

Considerable data exists at OPR (approximately 10 rocket flights)

which were analyzed by this technique.

Sample data was copied from tapes and programs were developed to

perform initial processing on the data. Specifically, a noise filter and

differentiation filter programs were written and used on the data. These

test results were in excellent agreement with known results. The net

noise suppression obtained (noise filter minus differentiation) was greater

than 60 db. Thus, development of a complete system was undertaken as

outlined.

PROCESSING PROCEDURE FOR EMISSION RATE DETERMINATION

I. Establish data file.

Edit data (replace calibration and noise "spike" points in data) using

optimal fitting.

Convert to Brightness Unit (Ra).

Plot resulting Ra data vs. time.

Produce and plot FFT of data.
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Van Rhijn Aspect Correction (R 0 -- Ra/,/a).

Plot resulting Ra data vs. time.

Produce and plot FFT of data.

II. Design a noise filter and process data through the filter (possibly

separate filters for precession and wideband noise).

Plot filtered data (vs. time).

[Ii. Differentiate output of noise filter (using a differentiation filter).

Plot resulting output (vs. time).

Convert to desired variables (emission rate vs. altitude) and produce

plot.

INTRODUCTIoN

The extraction of volume emission rate estimates from the raw data is

difficull since a differentiation of the received signal is required. Since

differentiation is a very noisy process (e.g., d/dt[Asin (wt)] = wAcos (wt))

the noise on the received signal will completely mask the desired output

after differentiation. Thus, the noise level on the signal must be greatly

reduced to allow us to obtain a meaningful estimate of the derivative.

The approach taken (after aspect correction) was to digitally filter the

raw data to "optimally" pass the signal while suppressing the noise.(1)

lirec, typically at least, 80 db reduction of noise level was obtained. The

res ulting output signal was then differentiated using a digital filter. (2 ) The

difi-rentiation enhances the noise by (at worst) 20 db. Thus, the overall

filter (noise filter plus differentiation) yields a net processing gain in ex-

ce.s of 60 db. That is, the S/N (signal-to-noise ratio) out is at least 60 db

higher than the input S/N ratio.

1.1" iI{ .SPECIFICATION

itt us consider a more detailed discussion of the filters used. In general,

a numerical filter consists of a set of "weights" W k which determine the

actual transfer function W(f) of the filter. (The design of a numerical filter

begins with establishing the shape of the data window in the frequency do-

main which will give the desired effect.) Having specified the theoretical

transfer function, the remainder of the problem consists of determining
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the weights Wk in such a way that the actual transfer function, or fre-

quency response, approximates the desired one as well as possible. A

perfect low pass filter, for example, would leave unaltered all frequency

components from f =0 to the desired cutoff frequency f 1 and then would

suppress all frequencies greater than fL" The response of an actual nu-

merical filter can only approximate this ideal beha% ior, with the accurIcv

of the approximation depending on the values of various design parameters.

As in the simple smoothing process, a numerical filter is appied, such

that

M
YOMt L W WkX(t+k~t)

k =- Mi

The filtering is accomplished by "sliding" the filter along the data, apply-

ing it to 2M + 1 data points to produce the filtered equivalent of the data

point which has been multiplied by W0 and then moving each weight to the

next point in the series and repeating the operation. Repetition of the

process until all the data in a given run have been covered produces a se-

ries of filtered data points which defines the output function y0 (t). Within

the precision of the filter these points will trace out the input function x(t)

with the unwanted high frequency components removed (if a low pass filter

is being used).

The basic form of the filter model is as follows. A nonrecursive (or

transversed) filter with linear phase is described by a transfer function.

L 1 (zM+k +z -k )

,!~~~ H(Z) =2 k

k=O

Evaluating the complex variable at Z =e j2 1rF yields the frequency response

M
H(ei 2 fFF) Z-j2 IFM L Wkcos 21FFk e - i2?rFM I0F)

k=0

where F -fT is the normalized frequency and T is the sampling interval.

With the filter coefficient, Wk! constrained to be real, the frequency

response is composed of a linoar-phase term, e ' j 2 y F M . and the purcly
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real frequency response 110 (F) of a zero-phase filter. Since the linear-

phase term only introduces a finite delay of M samples, the design prob-

lem becomes one of fitting H0 (F), a mirror image polynomial, to the

desired frequency responses. That is, determine the coefficients Wk

which yield the desired frequency responses for

M

H 0 (F) =Z WkCOS 21rFk

k=O

For the case at hand the weights were chosen to minimize the mean squared

error ( 1) between the actual filter frequency response and an ideal low pass

filter with a cutoff frequency chosen in accord with the input signal. Here,

a correction factor for the "Gibbs" phenomena was included to provide a

smooth transition from the pass band to the stop band of the filter.

The filters used here are specified in the figure below. It was found

that narrower filters began to remove some of the signal information while

wider filters allowed precession and more noise through with no added

signal information. Thus, the bandwidth was chosen to lie between these

two conditions.

~N=800

> 80 db down

f -03" 3 NZ.0833

N =550

I > 80 db down

fl- .0 3.33  .

Specification of Noise Filters
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Let us consider the differentiation technique employed. The ideal

frequency response characteristics of a digital differentiator are shown

below. The curves show the magnitude and phase of the frequency re-

sponse. The magnitude response increases linearly up to a normalized

frequency of 1.0 (the Nyquist frequency) and then decreases linearly back

to 0.0 at the sampling frequency. The magnitude response is periodic in

frequency, as shown, because of the discreteness property. The phase is

ff1/2 radians for frequencies up to the Nyquist frequency and -1/2 radians

from the Nyquist frequency to the sampling frequency, and is also periodic.

Magnitude Phase
17

0 1 2 -10 L [_2 1

2

Frequency Response Curves for an Ideal Differentiator

The technique employed to approximate an ideal differentiation filter is

given in Reference 2.

In this technique, linearly spaced samples of the frequency response

of the desired filter were specified and the continuous frequency response

was determined using the discrete Fourier transform. The interpolation

formula obtained was

H~JW) exp [- w2N l1 N- [Hke-Jirk/N sin(WNT

H(e )N (Nw -k- 1 1 (1)

k=0  s 2 N, )

where

Hk = (eJWT) w k = 01,...N-1 ; (2)

i.e., CHk] are values of the continuous frequency response at equally spaced

points around the unit circle; T is the sampling period; and N is the duration
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of the impulse response in samples. By making the substitution

Hk = jGkeJfk/N (3)

each of the terms inside the summation of (1) becomes imaginary, and thus

the entire sum is imaginary. For N even, the complex factor outside the

summation in (1) represents a pure delay of an integer (e - jwT(N/2 ) ) plus

one-half (e-jwT(1/2)) number of samples. Thus, (1) suggests that a differ-

entiator with exactly half a sample delay can be designed nonrecursively by

setting

k/(N/2) , =0,1,...,N/2

(n -k) /(N/2) k = (N/2) + 1, ... , N-1

and applying the substitution of (3) into (1).

Further details of the design technique and resulting response curves

can be found in Reference 2.

For the work described here a differentiation of lengths 128 was em-

ployed.

SAMPLING RATE

When experimental data are derived by discretely sampling some phen-

oincion at equally spaced intervals of time, the problem of aliasing may

(ccur in which the sampling rate is low enough to confuse two or more

frequercies in the data.

TFhe aiet restA is that they appear to be the same frequency. To avoid

this problem and hence to define a unique input function as described by a

set (if data points, one must be able to assume that the phenomenon studied

,s spcctrally limited to the range If < fc' where fe = f s/2, fs being the

the cut-off or Nyquist frequency. If such an assumption is valid, then the

function has been sampled frequently enough so that all significant fre-

quency components are determinable. This is a result of the sampling
theorem of information theory. The sampling theorem states that if a func-

tion G(t) contains no frequencies higher than W cycles per second, then it is
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completely determined by giving its ordinates at a series of points spaced

1/2W seconds apart, the series extending throughout the entire time do-

main.

Since the bandwidth of the last analog filter before digitizing is approxi-

mately 100 Hz, only about 200 to 400 samples per second are required (al-

lowing for the analog filter roll off).

Furthermore, since the desired signal bandwidth was confined to less

that 0.1 Hz (as can be seen from the FFT plot), considerable aliasing can

be tolerated. That is, sampling rates of 30 to 50 samples per second will

only cause aliasing above 0. 1 Hz thus not affecting the signal but simply in-

creasing the noise in the higher frequency range. With 60 db processing

again this noise increase can be tolerated allowing a lower sampling rate.

In fact, a sampling rate of 33 samples per second was used for the proces-

sing described here.

REFERENCES

(1) Oppenheim, A.V. and Schafer, R.W., Digital Signal Processing,

Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1975, Chapter 5.

(2) Rabiner, L. R. and Steiglitz, K., "The Design of Wideband Recursi\,e

and Non-recursive Digital Differentiators," IEEE Trans. Audio Elec-

tro-acoust., Vol. AV-18, pp. 201-209, June 1970.
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WAVELENGTH PEAK STUDY

Initiator: T. Conley

Problem No.: 4855

Project No.: 7670

This problem was to develop a computerized system to smooth noise con-

taminated spectral features in rocket measured CVF data (ICECAP data)

in order to accurately specify wavelength of peak emission features and

determine line widths.

A noise filter was developed for this data. Also, techniques for "op-

tirnal" estimation of peak locations were being studied. In particular, the

possible use of full band differentiations (with variance estimates) was

studied.

Due to high noise levels and short data spans, it was found that the re-

quired accuracy could not be obtained by these techniques. It was decided

that further analyses was not warranted at this time. ic ,ever, the noise

filter developed was made available to the initiator.
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STATISTICAL ANALYSIS OF GAS MEASUREMENT DATA

Initiator: C. C. Gallagher

Problem No.: 4861

Project No.: 6687

The problem was to develop statistical techniques to identify gas measure-

ments from column and spectrometer tests. Using calibration and test

runs, procedures for specifying an identification procedure was to be de-

veloped including probability measures of the uncertainties.

A program was developed to calculate the "statistics" of the calibra-

tion and test runs and provide student t tests for most probable compounds.

Sample data was used to evaluate the approach. The program is described

below.

STRATOSPHERE GAS MEASUREMENT ANALYSIS PROGRAM

1. Column Measurement

A. Establish calibration reference base for time.

B. Process experimental data (time of arrival and concentration).

(i) Take as many runs as possible.

(ii) Establish statistical distribution of time and concentration

(e.g., averaging independent samples of time of arrival yields

a Gaussian estimate with a variance dependent upon the data

stability).

C. Compare experimental with calibration data to establish "most

likely" compounds. Here, one can order possible compounds ac-

cording to their probabilities. [Note that closest in time is not

necessarily most probable.]

2. Process spectrometer data in similar fashion.

3. Check if the results of I and 2 agree as to most probable.

73

"ow . .• , , , . . .. . . . . . . - ' - - ' .. . . .. .ll~ - 'l 
- ' ' -

. . I . . .. I



ii) If not: perhaps need more data.

A second program was developed to plot and fit gas concentration

measurements. Specifically, gases captured during a balloon flight were

chemically analyzed. The data from the analyzer was handpunched ac-

cording to a certain format.

This program plotted gas concentration versus amplitude at different

pressures, and then made separate least square fits at each pressure.

The plots, therefore, aided the user in extrapolating characteristics of

the gas and of the equipment at undetectably low pressures.
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SIGNAL STATISTICS OF SCfNTILLATION

Initiator: 11. E. Whitney

Problem No.: 4893

Project No.: 4613

For this problem RDP. Inc. functioned as mathematical and statistical

consultants. Here, we answered a number of qu,,stions concerning the

"best" procedures for processing and analyzing scintillation data.

Following is a summary of the important results.

COMMENTS AN) QUESTIoNS (UN('LINING THl MAJOR ASPECTS OF

THE DATA ANALYSIS

We shall present some comments and questions concerning the data anal-

ysis techniques which shrild be employed tor this problem.

Before considering specifics we make the following general remarks:

(1) When the sample size of a data stream is large it is not always neces-

sary (or advisable) to use "optimal" processing procedures. In fact,

using "reasonable" approaches often yield results very close to op-

timal while providing simplicity. However, in general, one should

know how one is performing relative to "optimal" so as to justify the

procedures employed.

For the problem at hand where the system bandwidth is 2Hz and

the data samples are 15 minutes long one has approximately 3600 in-

dependent samples per data record. In general, this provides a large

number of degrees of freedom, allowing the use of suboptimal tech-

niques.

(2) The desired outputs are critical in determining the techniques to be

employed. In particular, the required resolutlon bandwidth and con-

fidence bars are key factors.
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i. l,stinate of Auto Correlation Function

The appropriate estimator for the auto correlation function is given by:

N-r
Rr N-r XnXn+ r , r =0, 1.2, IM

n=1

or if N X M

N-r

1Z11 . X n X n + r  , r = 0 , 1 , 2 . . .. , MN

where E(x n ) = 0.

This provides an unbiased estimator with a known variance. Specifi-

cally, the variance is approximated by:

raTr ( (T-r- u1)(R 2 (u)+R(u-r) R(u+r))

u:--(T-r)

The exact statistics (p.d. f.) of R r are, in general, not known. However,

the variance provides a measure of the quality of the estimate.
Should Al be large, one must consider obtaining R r by employing the

FFT approach (Faster and better estimator for large M). Here, one must

considec adding zeros to the data stream (N zeros needed for aliasing) and

employing weighting to provide a stable estimate.

i1. Power Spectra Estimate

The power spectra estimate max be obtained as (a) the Fourier transform

f the auto ct-rr 1'ation function or (b) directly , use of the FFT on the

original data stream. The major considerations here are as follows:

(:) Fourier transform of R

(i) Desired r( Iiition Bandwidths (B eI and Degrees of Freedom

With no further weighting, we have

I 2N
, A 'T N M
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where AT = time between samples.

Further weighting leads to the following relations:

DOF B

Bartlett 6N/M 3/MAT

Tukey 5.333N/M 2.666/M AT

Parzen 7.42 N/M 3.72 /MAT

These different windows have varying characteristics which

do not appear to be critical for our problem. What is im-

portant is to obtain the desired B and DOF.e
(ii) Statistics of Spectral Estimator

The resulting spectral estimator is X distributed with the

DOF given above. Thus, confidence bars can be established

accurately.

(b) Spectra by Direct FFT

(i) Desired resolution Bandwidths (B e) and Degrees of Freedom

(DOF)

Using the direct FFT without any time and/or frequency

averaging leads to a poor spectral estimator. In fact, the

standard error is equal to the estimate itself. It is not con-

sidered critical how the averaging is done. That is, the

primary factors are the resulting bandwidth resolution and

the DOF obtained. Thus, frequency/time averaging or use

of some weighting function is somewhat arbitrary and we can

consider the options. It is, however, important to correctly

determine the DOF which result since this dictates the ap-

propriate Chi-squared statistics.
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General Comments

(i) Bias vs. variance (fidelity vs. stability)

Smoothing of the estimator in order to reduce the variance

causes a bias error. Essentially, smoothing increases the

resolution bandwidth B which reduces the variance while in-
e

creasing the bias error. The DOF obtained essentially

establishes the variance, while the bias error is given by:

K 1
Bias - r"(f)

M K2

where r"(t'f) = second derivative of the spectra

K1, K 2 = constants depending on the smoothing procedure.

Some general properties of the bias error are as follows:

0 When T"(f) is negative (near a peak of the spectra), the bias

is negative and thus peaks will be underestimated. Con-

versely, when r,(f) is positive (near a trough), the bias

is positive and thus troughs will be overestimated.

* The narrower the peaks or troughs, the larger the value

of T*"(f) and thus the larger the bias.

* The bias is reduced as M increases (the base width of the

window is decreased). Therefore, the wider windows

have larger bias error (and smaller variance).

(ii) Correlation of samples

WN'hen smoothing is employed the samples become correlated

(resolution bandwidth increasesi. One should realize that the

adjacent samples are not independent. However, the samples

shouid )c ptotted since it is possible to miss a peak whose

frequency lies halfway between uncorrelated samples if only

the, independent samples are plotted.

U.. Estimates of Cumulative Probability Amplitude Distribution (C.D.F.)

If it Is appropriate to plot the empirical edf, the procedure for the present

problem should be to group the data (i.e., set up a frequency table) and
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plot the cumulative distribution for the sample. There is too much data to

plot the empirical cdf directly. Problems that arise here are as follows:

(a) determining how best to group the data so that we will not distort

the data (e.g., should groups be equi-probable or fixed width with

a standard set of class limits ?)

(b) determining if there are additional ways to display the data so that

it is informative (e.g., histograms).

Also in presenting the empirical cdf is it useful to put con-

fidence limits around it so that a graph, such as

,-...95 confidence limits

can be presented.

(c) Goodness of fit tests.

It appears that there are two main families of distributions to con-

sider - the Nakagami m-distributions and the log normal distri-

butions. At present, the test used for goodness of fit is the chi-

squared test. The points that must be considered here are:

(i) determining the number of categories to use in the chi-squared

test that will give the test maximum power.

(ii) determining how best to estimate the parameters of the dis-

tribution under consideration. In order to use the chi-squared

test all the unknown parameters of the distribution being con-

sidered must be estimated from the data. There are optimal

ways to do this (e.g., maximum likelihood techniques). Due

to the large sample size sub-optimal techniques (e.g.,

methods of moments) may be suffi(,ent.

(iii) determining the appropriate degrees ot freedom for the chi-

squared test.
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(iv) One should also consider alternative testing procedures. For

example, the Kolmogorov Smlrnov test might be more pow-

erful than the chi-squared test. Also, the 1 and b2 tests

applied to test for the log normal are more powerful than

either the chi-squared or Kolmogorov Smirnov tests.

(v) There may be situations where more than one distribution

may fit the data. For example, the Nakagami m-distribution

with m = 1 may fit the data while the Nakagami with m = 2 may

also supply a good fit. We may be able to supply techniques

for deciding which of these two is the better fit of the data.

In addition, we may be able to supply good graphical tech-

niques to aid in deciding which distribution best fits the data.

IV. (ther Considerations

(a) High frequency power spectra slope estimate

The estimate of the slope of the high frequency roll off of the

spectra should be studied.

Most probably a least square fit to the spectra will provide

"best" results. However, we should consider other alternatives.

For example, the statistics of the spectra are known () 2 dis-

tributed) and the slope is really an estimate of the derivative of

the spectra. Thus, we may be able to establish the statistics of

the slope and from this the maximum likelihood estimate (which

may be approximately or exactly the least square fit).
(b) Al ias-;i r:

Since the system bandwidth is 2Hz and the sampling rate is 6 sam-

ples/see, there should be no real aliasing problems. When this

is a concern, it can be checked by:

(i) Increasing the sampling rate, or

(ii) Checking the high frequency level of the spectra. This value

should reflect the thermal noise level of the system. (Look-

ing at somue samples this appeared to be satisfied.)
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(c) DC level

The DC level should be removed from the data before further

processing is done. This can cause numerical differences in es-

timates (for example, the bias) if not removed.

(d) Maximum entropy spectral estimates

When interested in estimating a power spectra with sharp peaks,

the maximum entropy spectral estimate has proven to be superior

to the Fourier estimate. The spreading and bias problems in-

here I in the Fourier approach limit its use for peaked spectra.

CHI-SQUARED TEST FOR GOODNESS OF FIT

The chi-squared test can be used to test if a set of data is a random sam-

ple from a specified distribution. We suggest using this test with equi-

probable cells. The number of cells should be from about 10 to 20. The

final number will have to be decided after discussion.

The steps in the test are as follows:

(1) Decide upon k, the number of cells.

(2) Select the hypothesized distribution, F(x).

(3) Find the values of xi, such that if the true distribution is F(x),

1F(xi 1 ) - F(xi) = , x0  -

Xk

These x. determine the k cells.1

(4) Compute the number of observations in the cells, call these 0.

fori = 1....,k.

(5) Compute the chi-squared statistic,

2,2 Z (0i n2/ n)

-9

(6) If F(x) is the true distribution, X has a chi-squared distribution with

k-1 degrees of freedom.
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Often times there are parameters of I(x) which are not known and

must be estimated from the data. Say there are m of these unknown pa-

ramneters. These parameters should be estimated using the maximum

likelihood estimation procedure. All of the steps (1) to (5) above are car-

ried out as shown except F(x) of (2) has the estimates in it and not the

actual parameters. The distribution of 32 of (5) is now chi-squared with

k-m-1 degrees of freedom when F(x) is the true distribution.

The IMSL (international Mathematics and Statistics Library) subrou-

tines can be used to perform some of the above.

Subroutine GIF can be used to compute the chi-squared statistic.

The hypothesized F(x) must be given as input. All parameters (or esti-

mates of them) must be supplied. The number of estimates must be ap-

plied as input.

LS E ()F KOLIMt)GOROV-SMIRNOV TEST TO OBTAIN CONFIDENCE IN-

T. RVAL FOR EMPIRICAL CUMULATIVE DISTRIBUTION FUNCTION

It is possible to predict by means of confidence intervals how close the

cumulative distribution of a sample can be expected to be to the cumula-

tive distribution of the population. The confidence interval is based on

the Kolmogorov-Smirnov test.

TV:e steps in the procedure are as follows:

(1) Arrange the data in order of magnitude

x, !< X**X
1) (2) (n)

(2) Plot empirical cumulative distribution function

1 0 0 F_ v - F _ _ _ _ _ _

AI
7,(x) ll(x < x)

0 --
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For our problem we must investigate if the data must be grouped.

Possibly with the rounding in the data grouping will not be needed.

(3) Above and below the empirical distribution draw two parallel polygons

at a distance 100(1.36/n) = 136/n (for a .95 confidence interval). The

width of a band giving confidence .95 for the statement, "The cumu-

lative distribution of the population is in the band" is 200(1.36/n)

272/n.

(4) The confidence band will look like

Any population cumulative distribution function which fits completely

in this shaded region is consistent with the data at the .95 confidence

level (or .05 significance level).

The IMSL (International Mathematics and Statistics Library) subrou-

tines can be used to perform the above.

Subroutine VSORTA can be used to sort observations.

Subroutine USPC can be used to print and/or plot empirical cumulative

distribution.

Subroutine USPC can be used to print and/or plot confidence interval

(either a .95 or .99 confidence intervals can be obtained).

Subroutine USPC can be used to print and/or plot a theoretical (popu-

lation) empirical cumulative. This theoretical distribution can be plotted

on the same graph with the empirical distribution function and the confi-

dence band. It is possible to produce printouts and/or plots for as many

theoretical distributions as the user desires (e.g., log-normal. Nakagami

m-distributions).

There are a few problems that may occur with the above procedure.

(1) The sample size, n, may be very large. This may create ,omputa-

tional problems.
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(2) The Kolmogorov-Smirnov test and the resulting confidence interval

assumes a continuous distribution function and no grouping or rounding

in the sample data. The technique is not valid if these conditions are

not met.

(3) The theoretical distributions that can be appropriately compared to the

empirical distribution (and the confidence band) are supposed to be

completely specified. There are not supposed to be any estimated

parameters. The technique is not valid if the parameters are esti-

mated.

(4 It may be possible that no mathematical model (theoretical distribution)

really matches the data. If the sample size is large we may observe

the phenomenon that no standard distribution (e.g., log-normal or

Nakagami-m) is acceptable by the above statistical criteria (i. e., falls

within the confidence band).

None of the above problems should be taken to imply that this approach

should be discarded. What is implied is that a routine writing of computer

programs will not produce a finished product. Further discussion is

needed to decide how to handle these problems. Also, it must be realized
that questions will arise as the programs ar( being put together. These

qu(,stions will have to be answered as they arise.

MX.XIMIM LIKELIIHOOD ESTIMATES OF TIlE PARAMETERS OF TIIE

NAKAGAMI-m DISTRIBUTION

O(ie way of writing the Nakagami-m distribution is

f(s) Mm r- -m/

m()

where S signal power. il - average power,
1

m < - (m=I for Rayleigh fading, m = 1/2 for fading more

severe than Rayleigh), and

r(m) gamma function of ni.
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Here,

a f0 s) ds (sf(s) ds)2 s 1
£ -- sf(s) ds , m -fs )2 2

fo f(S - ) 2f(s) (is

The likelihood for a random sample of size n is

Mmn -(m/O) S.
L m -1 (SIS 2 "  .n m- e

lmnfrn(m)

lS.log L n l og m + nm n~ -log 0- n rI(m) + log Si

bm r (mf)1

a logL.-nm 4 rS

The solution to these equations after setting A log L/ m = log L/;1 = 0

is

= S and -log 1 og log
n Ir(m) n

The last equation must be solved recursively.

N. B. r(m) dr(m)
dm

INTERPRETATION OF SCINTILLATION INTENSITY SPEC TRU M

Representing the scintillation random process as R(t), one may use either

inphase and quadrature or magnitude and phase to describe the process.

That is, y(t) -

x(t) I R(t) 1 cos 8(t)/ IR(t) 1

y(t) = IR(t) sin O(t) (t I

or R(t) = R(t) ej 6(t) e(t) I
1_ _x(t)
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Since only the scintillation ittensity is measured (i.e., e(t) unknown), our

signal is IR(t) 12. Classically, the power spectrum is interpreted as

P (w) =9[O(w)] = IE[T[ R(t)] 12 R (w) 12

(watts If it exists for
or db watts) each realization

of the random process

where Oq(w) is the statistical correlative function of 11(t) and E[ I denotes

the mathematical expectation. However, here we define the spectra of the

scintillation intensity as

P s(W) = 9[ IR(t) I2]

for a given realization of the process.

Using the relation of multiplication and convolution of the Fourier trans-

forms, we have

P (w) =g[ iR(t) 12] =- {R(t) R*(t)]

=R (w) + R (w) 4- c(w)
p p

whore 5 Sw) is the correlation function of the spectra R (w) of the scintil-

!:ition process.
Thus, ) *Nw) is the spectra of the scintillation intensity (in units of (db

s

wzftts)) and is not the same as the power spectra P(w) (or the square of the

power spectra Piw) 2 ) of the scintillation process itself. But Ps (w) is re-

latecd to P(w). In fact, it is the correlation function of the spectra R p(W).

)S(w) can be interpreted as a spectra by considering the scintillation in-

iensitv as the time signal of interest.

Fina!!y. IPs w) 12 would have units (db watts) 2 and would be the power

spxctra of the scintillation intensity.
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SPECTRAL SHAPE ESTIMATE

Attempts to obtain the MLE (Maximum Likelihood Estimate) for the spectral

slope lead to an intractable mathematical formula duc to the fact that the

spectral estimates are Chi-squared (j<2) distributed rather than Gaussian.

Thus, we recommend use of the least squares estimate (which is the MLE

under the Gaussian assumption). Here, the possible models are shown

below.

P(w) P(w)

P(w)

w. w.
1 1

(a) (b) (c)

Figure I

Case (a) requires a simple LS fit. However, cases (b) and (c) require a

choice of w i the break frequency. Here, we suggest choosing w i to mini-

mize the overall mean squared error over w. Reference (1) provides a

procedure for determining w.. Basically, the procedure involves entering

our initial guess for w i and evaluating equation (1) below in a neighborhood

about this point. Here, the final choice for w i is that value which maxi-

mizes L(i).

L(i) = N log /2 - i log 1- (N-i) log N2 - N

where N = total number of frequency points where spectra is cstimated and

4 the standard deviations of the LS estimates of the spectra

for the sections below w. and above w., respetively, for the i being evalu-

ated.
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FADE DURATION DISTRIBUTION

To determine the distribution of fade duration, define F (t) by
n

100

(% cumulative)
normalized

by total
number n

Length of Fade (time in seconds)

Fn(t) , n # fades of a specific magnitude.
n n

We can then assume the fades are independent separate samples and

the fade distribution is an empirical distribution function.

Since the true (theoretical) distribution function is not known, we can

only establish confidence intervals by using a non-parametric procedure.

We suggest the Kolmogorov-Smirnov procedure. Here, the confidence in-

tervals are

Fn(t 0 ) -d to F (t0 )+d

whcre (if the sample size n is greater than, 1 50), we have

For
-oniideace d

0. 1 I. 07//n

O. 50 1.22/¢
0.95 1t. 3 6!1V

0.9s9 1. 63/f-

RE E RE NC E

(1) Quandt, R.W.. "The Estimation of the Parameters of a Linear Re-

gression System Obe'ying Two Separate Regimes," American Statis-

tical Association Journal, Dec. 1958.
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INVERSION OF CONVOLVED IR DATA

Initiator: Thomas D. Conley

Problem No.: 4910

Project No.: 7670

The major effort done under this problem number was the simulation and

analysis of two optical (IR) spectra detection systems. One involved an

electronic Butterworth filter while the second replaced the Butterworth

configuration with a temporal filter. The equations may be summarized

as follows:

1. Using Butterworth

System Transfer Function is given by

-2

V r d 2 -1 ( v 4 4) '2 xf - v d 4

-2
fn]

_ 1

Butterworth

Input Background Noise Spectra is

B(f) = Kf m

Output power is

p =f T(f) B(f) df
0
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2. Using Temporal Filter

Here, the Butterworth filter is replaced by

sin 1% dfT )snn1V1

Performance of these systems with a target signal applied is evaluated

by replacing B(f) with the target spectra.

The relative performances of these two systems may be evaluated by

comparing the output S/N ratios of the two systems.

The parameters are defined as follows:

X footprint in meters

vd drift velocity m/sec

N A order of Butterworth filters

V target velocity
M A1.3

K constant

fl = fV/2X

11
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ALIGNMENT EXPERIMENT DATA ANALYSIS

Initiator: Capt. J.A. Shearer

Problem No.: 4921

Project No. : 7628

This problem was best handled using multiple regression analysis for fitting

theoretical curves to experimental data. Consequently, the quality of various

physical models were assessed.

In this particular application, the microscopic tilt of a missile in a silo

was used as the dependent variable, as a function of fifteen other independent

variables such as time, temperature, other tilts, and their derivatives.

The program calculates the correlation among the independent vari-

ables, and correlation with the dependent variable and the residuals result-

ing from the fit are analyzed to give their auto-correlations and power

spectra. This allows analysis of any structure that may remain if the model

is incomplete.

Results of the analysis showed that .-s 90c of the variation in micro-

scopic tilt was accounted for by an approximate function of temperatL re

and certain tilt and tilt rate measurements.
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PICTURE ELEMENT WORD LENGTH REDUCTION STUDY

Initiator: Rupert S. Hawkins

Problem No. : 4929

Project No.: 8628

INTRODUCTION

The problem concerned the development of a program for obtaining efficient

computer oriented techniques for compressing the word length of satellite

imagery while retaining :mage integrity. What we had to start with was an

array of image brightneset values, G(x,y). The array is rectangular, and

each of the brightness values in the array can be associated with a small

rectangular area of the image called picture elements.

The purpose of this effort was to obtain efficient automatic computer

techniques for transferring image information, spread over the conven-

tional six or eight bits of an image, to one bit while retaining the same

element array. The objectives were the preservation of image brightness

information in the reduced version and fast execution of the techniques on

conventional computers.

The above program takes into consideration that the original image,

G(x,y), can be either six or eight bits per picture element. Results were

obtained for the following array sizes: 1) 80 X80, 2) 500 x500. and 3)

6401 x 6400 ciemnents.

MaLhematical Formulation and the Optimal Solution

he objective, in the ideal case, for this problem involves solving:
-- 1 (,Y)1

min z = E I -(x ,y)n - n

x y n=1

where G(x,Y)n average of values at n grid points about (x,y) using 6 or 8

bits information (64 or 256 levels)
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and i'(xy)n = is to be chosen so as to minimize z as a similar average
using 1 bit of information (2 levels).

The problem as stated is an integer programming problem with a

quadratic objective function. (1 ) The sizes of standard arrays (grids) to be

considered are 80 x 80, 500 x 500, 6400 x 6400. Note that this indicates, in

the smallest case, that 6400 variables are to be assigned integer values.

Even In this "small'case we are well into the realm of "large" mathe-

matical programming problems. In the absence of the integrality condition

the problem is a nonlinear program. On the surface, it may appear the

added requirement of integer valued variables should not present a serious

problem. Indeed, the solution space is more restricted and the search

need not be made over an infinite number of points. Unfortunately, such a

conclusion could not be any more erroneous. Although the solution space

for the integer (discrete) problem is structurally better defined, it has

proved to be computationally formidable. In spite of over two decades of

intense research, and a tremendous increase in computer speed and power,

the developed integer algorithms have not yielded satisfactory computational

results.

Some algorithms have been developed for nonlinear objective integer

programming problems, which are only of theoretical interest at the cur-

rent time. Even for small problems, J.8-20 variables, they are not satis-

factory. For large problems, over 100 variables, the state-of-the-art is

severely limited even in theoretical results, computational advances are

virtually non-existent.

For these reasons, this optimization problem cannot be solved with

the present state-of-the-art in integer programming. However, we report

this approach formally here since it defines the mathematical structure and

offers some hope for the future.

Additional discussion of integer programming is provided in Appendix

A for the sake of completeness.

General Considerations From the Literature

A review of the literature in picture processing and pattern recognition*

has led to the following basic conclusions:
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* There appears to be no other work closely related to the idea of con-

serving local brightness as a criteria for bit reduction.

* Virtually all algoritnms for picture processing are somewhat heuristic.

That is, they do something reasonable and consider the effects of vary-

ing the algorithms rather than formally deriving an "optimal" approach.

This is due largely to the size of the arrays generally of interest and

to the inherent nonlinearity of the desired optimization.

* Generally, considering the problem of thresholding or truncation and
"enhancement," the basic forms of the algorithms (2) involve the use of

the Laplacian with smoothing and subsequent thresholding. Here, de-

pending on the particular objective, the details of a specific algorithm

vary.

It is important to note that the present algorithms agree with this

general approach and are thus consistent with the literature.

Based on these findings and the difficulties associated with integer pro-

gramming, it is felt that the basic form of the algorithm is proper. Thus,

the effort should be (and has been) directed toward the computer logic and

parameter value optimizations of the algorithm, rather than attempting to

develop a "newt approach.

Computer Optimization Efforts

We present here a discussion of the changes considered. We include both:

1. the historical or developmental approach of what has been done, and

2. the conclusions and recommendations resulting from the effort.

Historicai

Briefly stated, an initial ,xamination was made of the program, and a pre-

liminary list of p)ssible places for improvement was made. A few changes

were inade immediately to reduce the core-memory size of the program,

even before any bench-marks were run. Then, a considerable amount of

Including: NASA Reports and Defense Documentation Center Reports.
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time was spent in getting SPY operating properly. (SPY is a timing program;

it differs from SECOND in both accuracy and focus of attention; the program

being timed itself is essentially unchanged.) Next, our own timers and

counters were inserted in the program. Lastly, subroutine MATH was tested

under a variety of frame sizes, shapes, and relative positions, with a variety

of changes in Fortran, machine language and compiler options.

Conclusions of Computer Code Optimization

For all picture sizes:

1. Subroutine MATH was improved by about 40% by changing the structure

of all *[F" statements logic and using computer optimizations level

OPT=2. Further optimization to the "unsafe" level shows no essential

improvement.

Examination of the machine codes shows that rewriting the present

logic in machine language will give no further improvement.

2, In practical applications on the CDC 6600, subroutine MATH is much

less important than previously believed (when considering the overall

program running time).

For smali pictures (80 x80 elements) almost all the time is spent

in PACK and ROW; even if we were able to reduce the time spent in

MATH to zero, it would have little effect on the overall running time.

For large pictures (672 x475 meidas) still twice as much time is spent

in PACK as in the improved MATH.

Under the present setup, frames which are wide and short run faster

than tall, narrow ones, because the number of calls to PACK is directly

proportional to the height. Once in PACK the entire horizontal line is

processed, not matter how little Is actually needed. We recommend trying

new ways of logic in PACK, such as random access, or keeping pointers

to the starting edge of the frame desired. A desired frame size of

6400 x6400 looks as If it might cause overload problems when considering

the practical capabilities of the CI)C 60,00 system by systemw we mcan!

the conglomerate of hardware. software, and computer operations as

practiced at AFGL). A few things to be oxamined further are:
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(a) fine tuning of buffer sizes

(b) find out why PACK and ROW are better when not optimized

(c) program should be changed to give a message if the frame size is

bad, instead of running to time limit with no printout.

(d) the only things on the original checklist that remain to be con-

sidered are buffering and double buffering. These should be

attacked after the scheme for PACK is decided on.

The Two Algorithms Resulting from the Study

The two algorithms will be referred to as:

1. Original Optimized.

2. Modified.

The original optimized algorithm is that due to R. S. Hawkins which we

have optimized for fastest computer running time while yielding the iden-

tical final matrix (0, 1). A flow diagram is shown in Figure 1.

The Modified algorithm changes the logic yielding a different final re-

sult. This algorithm is, in general, faster; however, in some cases the
"quality" of the final (0, 1) picture is inferior to that of the original optimized

algorithm. A flow diagram for the modified algorithm is given in Figure 2.

The major difference is the skipping of elements which have been previously

pushed to the upper or lower bound.

General Conclusions

We found that the results of both algorithms were very dependent upon the

values of the incremental step size (c in Figures 1 and 2) and the upper

and lower levels (a and b in Figures 1 and 2).

The Modified algorithm had. in general, improved running time and

"-educed energy difference. However, the "picture quality" seems inferior

in some cases (for example, more granular).
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APPENDIX A

Some Properties of Integer Programming Problems ( 1 )

Standard Integer Programming Problem with linear objective,

n

max or min c x

j=-1

ni
subject to E a ix. =b. , .. m

J~
X i;? 0j 1,2,..n

x. an integer (for some or all J)

1. Cannot, as a first step, ignore the integer value constraints, solve the

resulting math program (linear or nonlinear) and then round off the

answers. Reasons are (1) rounded values may not satisfy the con-

straitits (i.e.. not feasible), or (2) rounded value if not necessarily

even close to the optimal integer solution.

Cannot solve continuous problem and then round up/down the answers.

2. Methods of solution generally fall into one of two approaches:

i) enumeration techniques including branch and bound techniques or

ii) cutting plane techniques.

That is.

Branch and Bound Method - Idea is to partition the feasible region into

more manageable subregions -on each one of these branches a bound

on the objective is derived and when it becomes clear that the Branch

wili riot lead to the optimal solution attention is shifted to another branch.

There are a number of explicit and implicit enumeration techniques

which have been generated. Such techniques are generally in the class

"branch and bound algorithms."

Note that if there are n variables which are allowed to assume

only two values each, then a complete tree has 2 n nodes (in the picture

processing "small case", we have 26400 in the 80 X80 case, 2100 in
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10 x 10 case). As a consequence if n is large, the amount of computer

time required is very large. In large, binary cases an Implicit

scheme is used. Further, in linear objective case, at each branch

point a linear program (continuous variables) must he solved.

Cutting Plane Methods - are almost always outpvrformed by a branch

and bound method. It works by modifying linear programming solu-

tions until the integer solution is obtained. It does not partition the

feasible region; rather it uses a single linar program which is modi-

fied by adding new constraints. It is a very inefficient algorithm.

Each new constraint (cut) removes an L. P-. non-integer solution region

and when a solution is reached which contains only integral values it

must be the optimal point.
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C)M 'tTATION OF OFF-AXIS RADIATION

Initiator: Mr. B. Schurin

Problem No.: 49-19

Project No.: 7670

A computer program. OAREJ, was written to calculate the off-axis radia-

tion from the earth's atmosphere measured by a sensor as a function of

(i) sensor altitude

(ii) tangent height, and

(iii) wavelength interval.

The program assurm!s that LOWTIIAN 4 has been used in emission

mode to compute atmospheric radiance with

(a) a fixed sensor altitude, and

(b) twenty-five lines of sight covering zenith angles of 90, to 1800.

Also assumed is that the spectral intervals and their corresponding

filter functions have been specified and that these filter functions have been

convolved with the output radiance from LOWTRAN 4. Currently, this com-

puta~ioa is perfornmed in a program called LOWFILT.

hlp i to OAREd consists of:

(a) L.OW,'ILT output spectral radiance incident on the sensor for 25

lines of sight, and

(b) sensor off-axis rejection weights.

The product of the sensor off-axis rejection function and the spectral

radiance of the, earth's atmosphere is numerically integrated over a solid

-agle in OAREJ. Since the off-axis rejection function is computed relative

to the sensor line of sight, the coordinate system used in LOWTRAN to

compute the radiance is rotated to yield radiance values compatible with

th: new coordinate system before the integration is performed in OAREJ.

A subroutine is included in OAREJ to accommodate different vehicle alti-

tudes. This option permits the user to run LOWTRAN at a fixed vehicle
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altitude and then obtain off-axis results for a variety of different vehicle

altitudes. Alternatively. LOWTILAN may be run for each vehicle altitude

and then LOWFILT and OAR&J run using each of the LOWTRAN ouitputs.

Description of the Computations in OAREJ

In Figure 1, the unprimed axes define

the sensor coordinate system and the

primed axis define the coordinate sys-

tem in which the radiance from the

earth's atmosphere is calculated. The

y y origin of the two-coordinate systems

is the sensor altitude (vehicle altitude);

the z"-axis is the local zenith and the

z-axis is the sensor line of sight; $ is

x x the angle from the local zenith to the

Figure 1 line of sight.

The transformation from the sensor to the radiance coordinates can

be written as

z' \-sin 0 0 Cos z .

In terms of spherical coordinates (p, 8,o), where p is the distance, 6 the

azimuth angle, and 0 the zenith angle, the transformation can be rewritten

as (psinff cos 0'~\ cos.60o sin \ /psin p cos
Psin P' sine' 0 1 0 = IPsin o sin (2)

pcos V /\-sin A 0 cos/ Pcos 0

Only the last equation In (2)
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cos cosP cosf - sinP sin$ cos 9 (3)

is required in the off-axis radiation calculations since the radiance in the

atmosphere is assumed to be independent of the azimuth angle.

En the sensor coordinates, the off-axis radiation measured by the sen-

sor as a function of , the angle from the zenith to the line of sight, is

given by

OAR($) -f dG W(O,0) 1(0'(eft)), (4)

where dQ = sin o, do dO = differential solid angle;

W(o, 19 = point source off-axis rejection function of the sensor

1((P') = radiance of the earth's atmosphere (watts/cm 2-ster)

1(<') is a function of o, O and fl as defined in Eq. (3), i.e.,

I W) __ 1( ,O~l (5)

Equation t4) can be rewritten as

OAR(O) = f id(P sin 0fI/- W(P , 1) I(q, , 0) d . (6)

in the Eq. k(;), the integration over 0 in the present calculations has

becn restricted to the lower hemisphere about the line of sight. Numerical

integration of Eq. (6) is performed in
Z the computer program using the trap-

7 ezoidal method.

As shown in Figure 2, the zenith

angle 0 and the tangent height TH are
related by

E sinT(-B s in  H+R E

H+RE

Figure 2
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where H = the altitude of the sensor, and

RE = the radius of the earth.

In the computation of OAR(#) in Eq. (6) the first problem is to deter-

mine the values of I(, 0, 0). The known values are I(') computed using

LOWTRAN 4 and LOWFILT. The relation between o' and the tangent height

TH is given in (*). For a fixed o,9, and P,

cos e = cos o cos08 - sin P sin cos (**)

The program OAREJ uses the values

1 RAD(1)

, RAD(2)

, RAD(L)

and maps each " to the interval [1, 0] by means of the cosine mapping and

then to the interval [0, 1] using the map y -x. An interpolation precedes

the last map.

RAD (m
RAD(M)RAD (2)

cosAI)D(1)

406 180, -1

Interpolation

RADINT (J) RADINT (J)

y [-x

-I 0 0
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From (**), for fixed o and

-Cos , = -cos (P cos f + sin (p sin 6 cos 0 (+)

and the relation (+) is used as a map of e to -cos ot and hence a radiance

value is associated with (0, 8, 8).

Measured values W(o i., 6.) of the off-axis rejection function are input

to OAIHEJ on cards. For each fixed 0p, OAREJ uses one of several options

to generate interpolated values of W(pi, .). The option chosen is related

to the number of 0. inputs.J
Finally, Eq. (6) is computed as follows:

(p) J-r2de W((p, 1) T( , e,l) =02 de W(0, 8) I(P, 8,)7r12 0f1

900
-2 E W((P, k) '((Pk,) Ae k

R=0

(the first and last terms are actually modified), where 6 k = (k/10) • 10 and

AOk = (1/10)th of a degree, then

7f12 v/12
OAR(P) =f do sin P de W(p, 6) I(p, ,)

and so *ffl2 17 /2
OAR(0 ) = 1F2do sinc •P 2f1r/ dO W(0, 0) I((o, 6, 0)

d

~ff 12

=(d dP sinp G(p)

= sin ( k + l G((pk+l) + sinPk G(, Ok )

k

In addition to computing OAR(#), the program modifies OAR(#) using the

field of view characteristics of the sensor.
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Subroutine to Extend LOWTRAN 4 Computed Radiance for Vehicle Alti-

tude = 256 km to Other Vehicle Altitudes

The standard input to the OFF AXIS REJECTION program includes radi-

ance values for 25 zenith angles (lines of sight) between 90' and 180" and

for a vehicle altitude of 256 km. If off-axis radiation results are desired

for vehicle altitudes other than 256 kin, then

(a) LOWTRAN 4 can be rerun for the new vehicle altitude and for appro-

priate zenith angles.

(b) the LOWTRAN 4 - 256 km results can be interpreted as new vehicle

altitude results by observing the relationship between corresponding

zenith angles.

An algorithm for part (b) has been incorporated in the OAREJ program

and the procedure used is as follows: /
/

R = radius of earth IE
HI = 256 km

TH = tangent height

H2 = new vehicle altitude

111 H2

or',

E E
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The underlying assumption is that the radiance incident on the sensor A

and on sensor B along the indicated line of sight is the same and, in effect,

only depends on TH.

By right triangle trigonometry,

TH+RE sin, TH+ RE
Hi +R E 1 H2+ RE

which implies

arsi 111+R E )sin 0,- RE + R E

arcsin H2 + RE

Consequently, radiance values from LOWTRAN 4 for HI = 256 km and angle

fll will be the same as the radiance for H2 and angle O. Thus, if the fol-

lowing table gives the input to the off-axis rejection program for HI =256,

Angle Channel 1 Channel 2 Channel k
01 1  [l 0f )  2(0 1 )  --. 0k1 )

02 1 102) 1202) 2)
3  1 ( 1 3 )  2 ( 3 )  .. Yk ( 3 )

[I (06n) I 2(on) "' k(Pn)

then exactly the same table is appropriate for a vehicle altitude H2, but the

rc.*tence angle is changed:

Angl Channel 1 Channel 2 Channel k
01' 1l (ft ) [2 1)  ... k( l )

2 I1( 2) 2(2) 08 I(2)

J3 r 1(03) 12(03 )  ... 'k 0 3 )

n i (n) 12(Bn)
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Input to OAREJ: The Off Axis Reiection Curves

For a given line of sight - the z-axis in the figure below - the off-axis re-

jection curves are measured as weights W(o, e). where o is the angle from

z

1= 0"

the z-axds to the x-axis and 9 is the angle from the x-axis to the y-axis.

See Figure 1 for the relation between the x-, y-, and z-axis and the

LOWTRAN 4 coordinate system x', y', z'.

Typically, a sequence 0:9P, <02 < ... <ON ! 90' of 0 values is speci-

fled. Then, for each 0i one or more 9i i's, 0 <6.. _<90', are selected and

measurements of the off-axis weights W( Pi, 0ii) are taken. There are three

options for the W((P, e) input to OAR EJ:
1. For each ¢Pi only one 9. is selected and the one value W(.Pi, 6.) is

measured. The assumption is then made that

W(O. 0) = W(Oi, 6. -90 < 0 < 90

2. For each 0., two O's are selected 01 < 6 < 0k ! 90" and the values

W(i, 0i) and W(< i ,. Ok) are input. The assumption in this case is that

W( 1,0j) and Wi i, k) lie on an ellipseW(oi 1). The parameters de-

fining the Oipse are determined from the above two inpuit values.
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3.For each co., three or more I.s are specified. fn this case, the values

W((D1 e1),W((,1, Ie2).W(pi~ 163), .

are used as a base to generate other values W~o i ) by interpolation.

Note 1: The assumption

W~o1 -) =W(( I ) 01 <6!Cgo,

is in force throughout OAREJ.

Note 2: For Option 1 above, the measured value

pi

is actually input twice and then Option 2 is executed.
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POWER SPECTRUM ANALYSIS, DIGITAL FILTERING

Initiator: E.A. Murphy

Problem No.: 4954

Project No.: 2310

This problem concerned experimental data with extremely poor signal-to-

noise ratio. The objective was to investigate the use of digital signal

processing techniques to improve the signal/noise characteristic in order

to extract desired information.

A program was developed to examine the frequency spectra of the

data.

This program calculates the Fast Fourier Transform of the specified

input curve. It prints its magnitude and phase and then plots its normal-

ized magnitude. The core storage needed (as specified in program) is

directly related to the number of Fast Fourier points desired. The less

points desired the less core storage required.

Coupled with the high noise level, it was found that the data drop out

rate was so high that severe aliasing of the spectra was present. This

rendered the extractions of useful information hopeless. Thus, no posi-

tive results could be obtained.
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AUTOMATED AZIMUTH MONITORING

Initiator: T. E. Wirtanen

Probleml No.: 4997

Project No.: 7600

The purpose of this problem was to extract data from a computer tape

which was generated by an "in-house" automated azimuth monitoring

system.

After running several tape dumping programs, it became apparent

that most of what was occurring was meaningless noise, because all the

meaningful information was packed into the very first record, which was

not getting picked up correctly.

As it turned out, the mistakes are occurring at a hardware level,

probably because the designers of the tape controller were unaware of

industry-wide standards used by tape transport manufacturers. This is

much more fundamental than, for example, reading a tape written in a

"wrong" or "foreign" format.

Thus, the problem was returned to the initiator with some information

as how to approach it.
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